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Executive Summary 
As cloud computing becomes a growing pillar for modern data intensive research, especially in fields 

like global health, many organizations across low- and middle-income countries (LMICs) remain 

hindered by operational constraints. These include limited DevOps capability, unreliable internet 

connectivity, fixed grant ceilings, and growing demands for environmental sustainability. Standard 

cloud architecture is based on stable infrastructure and high technical ability, making them neither 

viable in terms of cost nor sustainability within LMICs environments.  

This report introduces the Sustainable Cloud Operations for Research (SCORE) guidelines. It is a 

guideline for context-specific cloud architecture models for LMICs research groups to optimize 

architecture decisions for cost, performance, and carbon emissions. These guidelines consist of three 

phases: Assessment, Selection, and Optimization. There are actionable opportunities at each step to 

guide pipeline design and resource management under constrained operating conditions. 

The guidelines were validated using the National Institutes of Health Chest X-ray dataset (42 GB). Three 

Azure-native ingestion strategies based on the guidelines are compared: Synapse Pipelines (no-code), 

Azure Functions (serverless), and Synapse Notebooks (code-based). Execution time, cost, and 

emissions are tracked using Azure Monitor, Cost Management, and Emissions Insights tools. The 

results revealed that the serverless approach (Azure Functions) achieved the lowest cost (USD 0.01), 

lowest carbon emissions (0.00003 kg CO₂e), and shortest execution time (1.12 hours), whereas the 

Code approach (Synapse Notebooks) incurred the highest cost (USD 15.20) and emissions (0.16901 kg 

CO₂e), primarily due to a dedicated Spark pool. Additionally, geo-replication accounted for 

approximately 85% of storage costs, highlighting the need for clearer understanding of cloud pricing 

structures. 

SCORE addresses a critical gap among existing cloud infrastructure guidelines. Rather than providing 

broad best practices, it provides systematic guidelines in a practical iterative model that addresses the 

fiscal, technical, and sustainability constraints that LMICs institutions face. The guidelines are designed 

to be practical, scalable, and uniform in a range of research environments where cloud integration 

must be efficient and sustainable. 
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AWS   Amazon Web Services 

BI   Business Intelligence 

CO₂   Carbon Dioxide 

DLQ   Dead-Letter Queue 

DSI-Africa Data Science for Health Discovery and Innovation in Africa Consortium  

ETL   Extract, Transform, Load 

GB   Gigabyte 

GHG   Greenhouse Gases 

GHSP   Global Health and Science Practice 

GCP   Google Cloud Platform 

GPU   Graphics Processing Unit (inferred contextually) 

HIC   High Income Country 

IaC   Infrastructure as Code 

I/O   Input/Output 

IoT   Internet of Things 

KB   Kilobyte 

kgCO₂e   Kilograms of Carbon Dioxide Equivalent 

LMICs   Low- and Middle-Income Countries 

MB   Megabyte 

ML   Machine Learning 

NDAs   Non-Disclosure Agreements 

NIH   National Institutes of Health 

RAM   Random Access Memory 

SCORE   Sustainable Cloud Operations for Research 

USD   United States Dollar 

UZIMA – DS Utilizing Health Information for Meaningful Impact in East Africa 

VM   Virtual Machine 
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Introduction 

Research in the Cloud 

Cloud computing has become an essential part of modern research, offering scalability, flexibility, and 

cost efficiency for data-intensive projects. For health research institutions, especially in low- and 

middle-income countries (LMICs), cloud platforms make it possible to store, manage, and analyze large 

datasets without the need to maintain costly on-prem infrastructure. 1,2 The cloud also supports secure 

data collaboration across borders through approaches such as data de-identification, federated 

learning, and digital twin modeling, which enables sensitive information to remain local while still 

being shared for joint research. 

However, despite these advantages, implementing cloud-based research in LMICs remains a challenge. 

Teams often face limited DevOps expertise, unstable internet connectivity, rigid grant ceilings, and the 

pressure to operate sustainably.3  Most cloud systems provided by major vendors such as Amazon Web 

Services (AWS), Google Cloud Platform (GCP), and Microsoft Azure are designed for high-income 

countries with reliable infrastructure and specialized staff. As a result, LMIC institutions struggle to 

adapt these systems to their realities, often experiencing unpredictable costs and underutilized 

services. 

At the same time, the environmental cost of cloud computing is growing. Data centers consume 

massive amounts of power, contributing significantly to global greenhouse gas emissions.4 Although 

major providers now offer sustainability tools such as Microsoft’s Emissions Impact Dashboard and 

Google’s Carbon Footprint, which require advanced technical knowledge and infrastructure that are 

not always available in LMIC settings.5 

To address these challenges, the Sustainable Cloud Operations for Research (SCORE) framework 

provides practical, context-specific guidelines for designing cloud data pipelines, as the first step in 

carrying out research in the cloud, balancing performance, affordability, and sustainability. SCORE 

builds on five years of implementation experience through initiatives such as Utilizing Health 

Information for Meaningful Impact in East Africa (UZIMA-DS), under the Data Science for Health 

Discovery and Innovation in Africa (DSI-Africa) Consortium, which revealed the limitations of existing 

cloud estimation tools and the need for structured, LMIC-oriented decision-making models.6 

https://www.microsoft.com/en-us/sustainability/emissions-impact-dashboard?msockid=29f5ff93e058647c1cc4e984e1da65a3
https://cloud.google.com/carbon-footprint?hl=en
https://uzimadatascience.org/
https://uzimadatascience.org/
https://dsi-africa.org/
https://dsi-africa.org/
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By focusing on three iterative phases, Assessment, Selection, and Optimization, SCORE helps research 

teams systematically evaluate trade-offs between cost, performance, and environmental impact, 

offering a scalable model for sustainable cloud adoption in LMIC research ecosystems. 

 

 
Figure 1: An Overview of the SCORE Guidelines 
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Sustainable Cloud Operations for Research 

(SCORE) Guidelines 
The Sustainable Cloud Operations for Research (SCORE) guidelines are designed as a practical decision-

making model to guide the design, selection and implementation of cloud-based data pipelines in low-

resource research settings. It directly addresses the operational constraints faced by teams working in 

LMICs contexts including: tight budgets, limited DevOps capacity, and intermittent connectivity, by 

offering a structured process for making infrastructure decisions that balance performance, cost, and 

environmental sustainability. The SCORE guidelines include the assessment of the operational 

structure of the data profile, selection of the right ingestion pipeline, and optimization of the data 

pipelines in the cloud. The guide takes a three-phase approach to systematically evaluate the expected 

trade-offs of cost, performance, and carbon emissions. The guidelines are built around three phases: 

Assessment Phase 

The Assessment Phase forms the first step in the Sustainable Cloud Operations for Research (SCORE) 

framework, providing a systematic method for evaluating the operational environment in which cloud-

based data pipelines will function. This phase identifies the contextual factors that influence whether 

a cloud ingestion model can be deployed effectively, cost-efficiently, and sustainably. 

SCORE defines seven design parameters summarized in Table 1 below, that ensure that LMIC research 

teams make informed, context-aware choices before implementation, aligning pipeline design with 

both technical realities and sustainability objectives. 
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Table 1. Data pipeline parameters for selecting an ingestion model that fits both the technical and 

organizational context. 

 

Question Design Dimension Ingestion-Specific Implication LMICs Use Case 

1. How flexible 

must the cost 

model be? 

Fixed (strict ceiling), 

Variable 

(consumption-

based), Mixed. 

Cost flexibility affects platform 

choice. Serverless works well for 

irregular patterns but may 

become expensive for large files 

or high throughput. 

Mixed: Serverless 

ingestion with 

scheduled batch 

pre-processing to 

stay within grant 

budget. 

2. What is the 

available 

engineering 

capacity? 

Dedicated DevOps 

team, Generalist 

engineers, Low-code 

or GUI-only teams. 

Engineering profile dictates tool 

complexity. No-code platforms 

reduce friction but limit control. 

DevOps teams can implement 

pipelines using code and CI/CD. 

Low-code: Pipelines 

built with drag-and-

drop orchestration 

tools, minimal 

scripting required. 

3. What is the 

expected 

volume of data 

Small (KB to MB), 

Medium (MB to GB), 

Large (GB to TB), 

Very Large (>TB). 

Volume informs storage format, 

compression method, and 

transfer approach. Higher 

volumes may require chunked 

uploads, parallel transfer 

clients, or external drives. 

Medium: 6 GB per 

week, accumulated 

from edge devices 

and uploaded 

nightly. 

4. What is the 

data arrival 

pattern? 

One-time, Periodic, 

Continuous, 

Intermittent. 

Arrival patterns affect buffer 

design, queuing, and 

orchestration triggers. 

Intermittent uploads require 

retry logic and local caching. 

Intermittent: Daily 

uploads from field 

teams using mobile 

data with frequent 

signal loss. 

5. Is the 

workload 

Compute 

intensive? 

No (pass-through 

only), Light 

(compression or 

validation), Heavy 

(pre-processing or 

transformation). 

Determines whether ingestion 

can be function-based or if it 

requires a pre-processing job 

stage with dedicated compute. 

Light: Files 

compressed and 

validated before 

storage, no 

transformation. 

6. What is the 

frequency of 

execution? 

Scheduled, On-

demand, Event-

triggered, 

Continuous. 

Frequency shapes architecture. 

High-frequency or continuous 

ingest may need autoscaling; 

infrequent ingest should avoid 

idle cost via cold-start-

optimized functions. 

Event-triggered: 

Upload jobs initiated 

when new files are 

detected in a 

watched folder. 

7. What is the 

state of 

internet 

reliability 

Stable, Intermittent, 

Offline (manual 

sync). 

Ingestion must tolerate sync 

failures. This affects timeout 

handling, retries, deduplication, 

and support for out-of-band 

uploads (e.g. USB). 

Intermittent: 

Uploads fail several 

times per week and 

retry automatically 

using local buffer. 
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Selection Phase 

Once a research team has assessed its context; budget limits, technical capacity, data size, and network 

reliability, the next step is to select the right data ingestion model. The Selection Phase of SCORE 

translates those findings into an actionable architectural decision tailored to the realities of low- and 

middle-income country (LMIC) research environments. 

In LMIC projects, cloud spending can quickly exceed expectations due to hidden operational costs such 

as inter-region replication and network egress fees. For instance, during the setup of the UZIMA-DS 

cloud research hub, about 30% of the annual cloud budget was consumed by unexpected configuration 

costs. Studies show that unmanaged data transfer and replication can account for up to 6% of total 

spending in data-centric cloud environments.7 These costs often go unnoticed in standard pricing 

calculators, making it difficult for teams with fixed budgets to experiment safely. 

Therefore, pipeline selection in SCORE emphasizes understanding how data moves through the 

system, including upload frequency, ingestion triggers, and potential points of failure. This pragmatic 

approach ensures that infrastructure decisions are based on real-world performance and affordability 

rather than theoretical best practices. Ultimately, SCORE’s Selection Phase prioritizes choosing a 

pipeline that is fit-for-purpose, sustainable, and operable under LMIC constraints, not merely the most 

sophisticated or feature-rich option. 

 

Figure 2:The Total Cost of Research 
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Table 2. Summarizes common ingestion pipeline archetypes, highlighting their best-fit use cases, 

trade-offs, and practical relevance for LMICs settings 

Pipeline Type Best Fit Key Trade-offs LMICs Use Case 

Event-driven 

serverless (e.g. 

AWS Lambda, 

Google Cloud 

Functions, Azure 

Functions) 

Lightweight ingestion 

triggered by file uploads, 

mobile syncs, or sensor 

pushes. 

Best for bursty, low-

throughput data with 

cost sensitivity. 

Short runtime limits (5 

to 15 min), cold start 

latency, poor for 

stateful or multi-step 

logic. 

A field survey app triggers 

a cloud function to upload 

encrypted form data after 

each submission. 

No infrastructure is kept 

live between uploads. 

Low-code 

orchestration tools 

(e.g. Azure Data 

Factory, Google 

Cloud Data Fusion, 

Apache NiFi) 

Scheduled or drag-and-

drop ingestion from 

known sources. 

Useful for low-

engineering 

environments with 

predictable workloads. 

Limited control over 

logic, debugging 

overhead, connector-

based billing can grow 

expensive. 

GUI reliance can slow 

collaboration. 

A generalist team uses a 

visual tool to pull files 

nightly from shared 

folders into cloud storage. 

The job runs unattended 

on a fixed schedule. 

Code-based batch 

pipelines (e.g. 

Apache Airflow, 

custom Python 

with SDKs, Spark 

ingestion) 

High-volume, compute-

heavy or customized 

data workflows. 

Allows deep control over 

retries, transformations, 

and error handling. 

Requires skilled 

engineers, ongoing 

monitoring, and tuning 

to avoid resource 

waste. 

Complex to maintain in 

low-capacity teams. 

A research lab ingests 

large imaging files weekly, 

transforms them using 

Spark, and compresses 

output to Parquet for 

downstream analysis. 

Hybrid 

orchestration 

models (e.g. 

Functions with 

queues and 

notebooks, or Logic 

Apps plus batch 

processing) 

Workloads with mixed 

frequencies, such as 

real-time ingestion from 

mobile devices and 

batch processing of 

uploads. 

Requires tool 

integration, 

independent 

monitoring, and 

workflow 

orchestration. 

Harder to debug across 

components. 

A telemetry pipeline 

triggers ingestion from 

devices in real time while 

scheduling batch jobs to 

run weekly for 

aggregation and cleanup. 

Offline-first with 

batch sync (e.g. IoT 

edge, USB upload 

tools, mobile-to-

cloud sync bridges) 

Sites with intermittent 

or no connectivity. 

Data is staged locally 

and synced periodically. 

Suitable for edge devices 

or remote deployments. 

Delayed monitoring, 

risk of data loss if sync 

fails. 

Requires retry logic, 

deduplication, and 

metadata tracking. 

Remote sensors write 

data to SD cards. Data is 

uploaded in batches via 

mobile hotspot or USB 

connection once the site 

regains network access. 
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Optimization Phase 

After selecting the right pipeline, the final step in the SCORE framework is the Optimization Phase. This 

stage focuses on refining performance, minimizing cost, and ensuring environmental sustainability, 

which are key priorities for research teams operating in resource-limited LMIC contexts. 

Cost Optimization 

Cost optimization begins with matching infrastructure to actual demand. Serverless tools like AWS 

Lambda or Azure Functions can eliminate idle costs for intermittent workloads, while reserved 

instances can reduce expenses by over 60% for continuous or 24/7 operations.8,9 Data compression 

techniques such as GZIP or Parquet formats help lower storage and transfer fees, which is especially 

critical where data movement costs are high.10 Regularly tagging resources by project or team exposes 

hidden charges, such as unused virtual machines, often up to 30% of cloud environments remain idle 

or abandoned, which can be mitigated through scheduled shutdowns.11 

Performance Optimization 

Performance optimization in LMIC environments often revolves around overcoming bandwidth 

limitations and hardware disparities. Proven strategies include: mitigating cold starts by pre-warming 

serverless functions, reducing latency by up to 90% for frequently invoked jobs;12,13  accelerating data 

transfers using multi-part upload techniques, which can cut transfer times by 70–80% over high-

latency networks;14 using binary data formats like Parquet or Avro to reduce payload size by up to 75%; 
15,16 dynamic batching, which adapts to network health, preventing bottlenecks during unstable 

connections.17 

Low-Skill Engineering Capacity 

In many LMIC research environments, teams have limited DevOps and software engineering skills, 

making it difficult to manage complex cloud systems effectively. The SCORE framework addresses this 

by promoting automation and managed services that simplify deployment and maintenance. Tools 

such as AWS Glue and Azure Data Factory automatically handle infrastructure scaling and monitoring, 

reducing the need for specialized staff.14  To ensure consistent and rapid setup, SCORE recommends 

Infrastructure-as-Code (IaC) tools like Terraform or AWS CloudFormation, which use templates to 

standardize deployments. Monitoring tools such as CloudWatch and Azure Monitor provide visual 

dashboards for performance and cost tracking, removing reliance on command-line operations. 

By adopting these managed and automated solutions, LMIC teams can maintain efficient, reliable, and 

cost-effective data pipelines without extensive technical expertise, strengthening long-term 

sustainability and scalability.14 

Through these optimizations, SCORE ensures that cloud operations remain affordable, efficient, and 

environmentally responsible, making large-scale data science feasible in LMIC research ecosystems. 

Once a pipeline type is selected, this phase introduces targeted strategies for tuning performance, 

reducing cost, improving resilience, and minimizing environmental impact. After selecting pipeline 

architecture, apply the following prescriptive techniques to optimize cost, performance, resilience, and 

environmental impact. These are contextualized for research operations under LMICs constraints. 
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Table 3. Summarizes guidelines for cost, performance and low-skill engineering capacity 

optimization, giving context on when to apply these techniques and practical relevance for LMICs 

settings. 

 Technique When to 

Apply 

Tactic LMICs Use Case 

Cost 

Optimization 

Use serverless 

compute to avoid 

idle costs 

For event-

driven or 

bursty jobs 

Use Azure Functions or 

Data Factory with 

consumption tier. 

Sensor data from 

heart monitors 

Reserve compute 

only for consistent 

workloads 

When usage 

exceeds 8–12 

hrs./day or is 

24/7 

Use Reserved Instances 

or pre-warmed Spark 

pools. 

Incoming EHR 

data 

Compress data 

before ingestion 

Always Use GZip or Parquet to 

reduce storage and 

egress fees. 

Integrating an 

EHR system with 

a cloud service 

Avoid always-on 

dev/test resources 

During 

development 

Use auto-shutdown 

policies on dev VMs and 

sandboxes. 

When using 

multiple cloud-

based virtual 

machines 

Enable granular 

cost tagging 

Always Tag by pipeline stage, 

dataset, and team for 

audit-ready billing. 

When managing 

multiple data 

pipelines/teams 

Performance 

Optimization 

*Pre-warm 

serverless 

Frequent 

ingestion 

(>5/min) 

Timer-triggered 

invocations; AWS Lambda 

Provisioned Concurrency 

Real-time sensor 

telemetry 

Multi-part 

transfers 

Files >100MB; 

high latency 

AWS S3 Transfer 

Acceleration; Azure Blob 

parallel upload 

Satellite imagery 

ingestion 

Binary serialization Structured 

data ingestion 

Parquet/Avro encoding; 

Protocol Buffers 

Clinical trial data 

collection 

Adaptive batching Unstable 

networks 

AWS Kinesis dynamic 

batching; Azure Stream 

Analytics watermarking 

Flood sensor 

networks 

Low-Skill 

Engineering 

Capacity 

Optimization 

Managed ETL 

services 

Limited 

DevOps skills 

AWS Glue, Azure Data 

Factory (serverless) 

Genomics 

metadata 

ingestion 

*Pre-warming serverless functions or pre-allocated Spark clusters may incur minimal constant cost. In 

LMICs projects with strict ceilings, weigh costs against latency benefits. 
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Environmental Sustainability 

Cloud computing has enabled rapid digital growth but also contributes significantly to global energy 

consumption and greenhouse gas emissions.2,18 The SCORE framework emphasizes environmentally 

responsible design to balance performance with sustainability. Efficient data pipelines can reduce 

carbon impact by optimizing how and when computing resources are used. SCORE recommends 

scheduling workloads during low-carbon intensity periods using tools like Azure Emissions Dashboard 

or WattTime APIs, and prioritizing data centers powered by renewable energy. Regular workload 

profiling ensures that compute resources are “right sized,” preventing waste from over-provisioned 

virtual machines. Tracking emissions through platforms such as Microsoft Sustainability Manager 

supports transparency and accountability. 

By integrating these green engineering practices, LMIC research teams can reduce operational costs 

while minimizing environmental harm, advancing both scientific and ecological sustainability within 

their data-driven health research operations.2,18 

 

Figure 3: Global GHG Emissions per sector by 2040. Source: Hitesh Allam, Sustainable Cloud Engineering: Optimizing 
Resources for Green DevOps. International Journal of Artificial Intelligence, Data Science, and Machine Learning (2023) 
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Testing our Concept 

Approach 

To evaluate the practical relevance of the SCORE framework, we conducted an applied test simulating 

real-world cloud-based research conditions. The objective was to determine whether SCORE’s 

recommendations could guide the design of cost-efficient and environmentally sustainable data 

ingestion pipelines in a low- and middle-income country (LMIC) context. 

The test used the NIH Chest X-ray14 dataset, a large open-access dataset comprising 112,120 chest 

radiographs from 30,805 patients, totaling approximately 42 GB.19 This dataset was selected because 

of its substantial size and suitability for benchmarking performance, even though its content was not 

directly relevant to the study’s health outcomes. The experiment focused on a single, repeatable task: 

data ingestion, moving data from a source repository into Azure cloud storage. To produce consistent 

and reliable metrics, the ingestion process was repeated ten times under the same conditions. 

Three Azure-native tools; Synapse Pipelines (no-code), Azure Functions (serverless), and Synapse 

Notebooks (code-based), were compared using the same dataset and parameters. To capture 

outcomes, the study employed Azure Cost Management to measure financial efficiency, Azure Monitor 

/ Log Analytics to assess performance (execution time, CPU, and memory usage), and the Azure Carbon 

Optimization Tool to estimate emissions. Together, these tools provided a comprehensive view of the 

relationship between cloud architecture choices, cost, and environmental impact, validating SCORE as 

a practical, data-driven approach to sustainable cloud operations for LMIC research environments. 
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Table 4. Gives a description of each resource group and its purpose 
Approach Description Purpose 

Synapse Pipelines (No-Code) A no-code data integration and 

orchestration tool within Azure 

Synapse, allowing workflow 

automation without extensive 

coding. 

Evaluates efficiency of a fully 

managed, no-code orchestration 

system with automatic execution 

optimizations. 

Synapse Notebooks (Code, 

Python) 

A code-based interactive 

computing environment using 

Python, enabling custom 

scripting and fine-tuned control 

over data processing. Requires 

mounting to a compute 

resource. 

Assesses resource usage and 

performance when users have direct 

control over the back-end code and 

computation. 

Azure Functions (Serverless) An event-driven, serverless 

compute service that 

dynamically scales based on 

workload demand, eliminating 

idle resource costs. 

Explores efficiency of a fully 

serverless model where resources 

are allocated dynamically, reducing 

potential idle usage costs. 

 

Although our three primary metrics were cost efficiency, time efficiency, and environmental impact, 

additional metrics such as write/storage costs and geo-replication v2 data transfer were also 

considered as they demonstrated a significant bearing on the overall costs (Table 5). Execution time 

was collected immediately after task completion for each approach. Cost and carbon emissions were 

retrieved from Azure once the monthly data was released.  

Table 5. Primary metrics and associated measurements and considerations 

Metric Definition Measurement Measurement 

Tool 

Considerations 

Cost 

Efficiency 

Reduction in 

operational costs 

without 

compromising 

performance. 

Cost = Usage 

Quantity 

(standard) × 

Unit Price (non-

standard). 

Azure Cost 

Management 

+ Billing 

Unit price varies due to 

negotiated pricing, demand, 

location, etc. Actual costs 

may be under NDAs, limiting 

transparency. 

Time 

Efficiency 

Reduced 

execution time 

for data 

processing tasks. 

Execution time 

measured from 

task initiation 

to completion. 

Azure 

Monitor / Log 

Analytics 

Measured in 

seconds/milliseconds; 

variability introduced by 

cold starts, system 

overhead, and queue wait 

times, i.e., may not measure 

CPU runtime. 
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Environmental 

Impact 

Decrease in 

carbon emissions 

and energy 

consumption. 

Carbon 

Emissions = 

Energy 

Consumption 

(standard) × 

Carbon 

Intensity (non-

standard). 

Azure Carbon 

Optimization 

Tool 

Carbon intensity depends on 

grid mix, data center 

location, and regulations. 

Azure aggregates emissions 

at the monthly and resource 

group level, reducing 

granularity. 

Write/Storage 

Cost 

Charges incurred 

when data is 

added /updated 

and/or stored in 

the pipeline. 

Based on the 

total volume of 

data written 

and stored (in 

GB). 

Azure Cost 

Management 

+ Billing 

Rarely accessed data can 

accumulate significant 

charges if not optimized. 

Geo-

Replication v2 

Data Transfer 

Movement of 

data between 

geographically 

distributed Azure 

regions under the 

Version 2 geo-

replication 

model. 

Billing is per GB 

of data 

replicated 

across regions. 

Azure Cost 

Management 

+ Billing 

The volume and frequency 

of data changes, the 

distance between regions, 

and the chosen storage tier 

have an impact on the 

overall cost. 

*The hierarchy for Azure resources is as follows: Subscription > Resource Group > (Resource) Azure Synapse 

Analytics > Pipeline > Activity. 

 

Outcome Metrics and Results 

The Azure Functions (Serverless) approach delivered the best overall performance, recording the 

lowest cost (USD 0.01), lowest carbon emissions (0.00003 kg CO₂e), and shortest execution time 

(1.12 hours). This efficiency was attributed to serverless computing’s ability to allocate resources 

dynamically, only when needed, avoiding idle costs. The Synapse Pipelines (No-Code) model 

performed moderately well, costing USD 1.68, emitting 0.01873 kg CO₂e, and taking 6.9 hours to 

complete. Its visual, managed environment simplified orchestration but added some latency due to 

additional backend processes like scheduling and logging. 

In contrast, the Synapse Notebooks (Code-Based) approach was the least efficient, costing USD 15.20 

and generating 0.16901 kg CO₂e, with a runtime of 5.74 hours. Most of these costs were driven by a 

dedicated Spark pool, which remained active even when idle. Additionally, geo-replication accounted 

for roughly 85% of storage costs, underscoring how data movement and redundancy can significantly 

affect budgets. Overall, these results confirm that serverless ingestion pipelines, when aligned with 

SCORE guidelines, offer the most sustainable and cost-effective approach for LMIC research 

operations. 
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Table 6. Performance Metrics for One-Time Data Ingestion and Storage and Data Transfer Costs 

 
Approach 

Synapse 

Pipelines (No-

Code) 

Azure Functions 

(Serverless Code) 

Synapse Notebooks 

(Code, Python) 

Cost (USD) 
1.68 0.01 15.20* 

Carbon Emissions (kg CO₂e) 
0.01873 0.00003 0.16901 

Execution Time (hours) 
6.90 1.12 5.74 

Write/Storage Cost (USD) 
1.56 1.75 1.55 

Geo-Replication v2 Data 

Transfer (USD) 
8.73 9.61 8.73 

*The cost for Synapse Notebooks includes $0.01 for the Synapse Workspace and $15.19 for the 

Dedicated Spark Pool. 

 

Discussion 
The results of the SCORE proof of concept challenged common assumptions about the efficiency and 

sustainability of cloud-based data ingestion methods. The research team initially expected that code-

based pipelines, such as Synapse Notebooks, would be the most cost-effective and environmentally 

sustainable due to their flexibility and potential for code-level optimization. However, the findings 

revealed the opposite: dedicated compute environments like Spark pools substantially increased both 

cost and carbon emissions, accounting for nearly all of the expenses in that approach. 

This pattern mirrors ongoing research within LMIC research environments, where compute-intensive 

and security-heavy resources are often the largest contributors to both financial and environmental 

overheads. These insights highlight the importance of careful infrastructure planning and demonstrate 

that high-performance configurations are not always the most sustainable or affordable choices in 

resource-limited contexts. Conversely, serverless models, specifically Azure Functions, outperformed 

other configurations in every key metric: lowest cost (USD 0.01), lowest carbon emissions (0.00003 kg 

CO₂e), and shortest execution time (1.12 hours). Serverless architectures dynamically allocate 

computing power based on demand, eliminating idle resource costs and improving both economic and 

environmental efficiency. 

Interestingly, storage costs remained fairly consistent across all methods, but geo-replication 

accounted for roughly 85% of those costs, emphasizing how easily overlooked pricing factors can 

inflate budgets. Teams frequently underestimate egress and replication fees, assuming these services 

are low-cost or included. The study’s results reinforce the need for clearer understanding of cloud 
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provider pricing models and for transparent budgeting frameworks suited to LMIC research 

institutions. Overall, the results affirm SCORE’s value as a context-aware guideline that enables 

researchers to make evidence-based infrastructure decisions, balancing performance, cost control, 

and environmental responsibility across diverse research environments. 

Considerations and Future Directions 
While the SCORE framework offers a structured, evidence-based approach for building sustainable 

cloud operations in LMIC research environments, several considerations must guide future refinement 

and broader implementation. The current validation was conducted exclusively on Microsoft Azure, 

meaning that results may vary across other major platforms such as AWS and Google Cloud Platform 

(GCP), where architecture, pricing, and sustainability tools differ. Expanding SCORE testing across 

multiple cloud providers will help confirm its generalizability and reveal platform-specific nuances that 

affect cost and emissions. 

Additionally, the validation focused primarily on data ingestion workflows. To fully evaluate SCORE’s 

versatility, further studies should include more complex pipeline stages, such as data transformation, 

analysis, and GPU-intensive machine learning workloads. Such tasks often behave differently under 

variable compute and storage conditions. Another limitation involves the granularity of emissions data. 

Azure’s current tools aggregate carbon metrics monthly at the resource-group level, which makes it 

difficult to capture emissions from individual tasks in real time. Until finer-grained tracking becomes 

available, LMIC teams may need to rely on proxy metrics for environmental optimization. 

Finally, successful SCORE adoption depends on capacity building. Many research teams in LMICs have 

limited cloud literacy, emphasizing the need for training programs, documentation, and community-

based support systems to ensure practical implementation.  
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Conclusion 
This paper introduces SCORE guidelines that aim to enable LMIC research teams to navigate the triple 

constraints of cost efficiency, technical feasibility, and environmental sustainability in cloud-based data 

pipelines. Through a structured three-step approach, Assessment, Selection, and Optimization, SCORE 

addresses critical gaps in existing cloud guidance by contextualizing, quantifying tradeoffs, prioritizing 

practicality, and advancing sustainability. Future work should expand SCORE’s validation to multi-cloud 

environments, other LMICs deployments, and advanced pipeline stages (e.g., distributed ML training). 

Integration with open-source monitoring tools could further reduce dependency on proprietary 

solutions. By democratizing sustainable cloud practices, SCORE empowers LMICs researchers to 

leverage cloud infrastructure as an equitable, scalable, and ecologically conscious foundation for 

scientific advancement. 

 

Figure 4: Bridging the Cloud Research Gap in LMICs 

 

  



 

  
16 SUSTAINABLE CLOUD OPERATIONS FOR RESEARCH 

(SCORE) 

References 
1.  Kumar Pentyala D. Enhancing the Reliability of Data Pipelines in Cloud Infrastructures Through 

AI-Driven Solutions. Vol. 6, An International Peer Review Journal) VOlUME. 2020.  

2.  Allam H. Sustainable Cloud Engineering: Optimizing Resources for Green DevOps. International 

Journal of Artificial Intelligence, Data Science, and Machine Learning [Internet]. 2023;4:36–45. 

Available from: https://ijaidsml.org/index.php/ijaidsml/article/view/179 

3.  Franzen SRP, Chandler C, Lang T, Samuel D, Franzen RP. Health research capacity development 

in low and middle income countries: reality or rhetoric? A systematic meta-narrative review of 

the qualitative literature. BMJ Open [Internet]. 2017;7:12332. Available from: 

http://bmjopen.bmj.com/ 

4.  Monserrate SG. The Staggering Ecological Impacts of Computation and the Cloud [Internet]. 

The Mit Press Reader. 2022 [cited 2025 Jul 10]. Available from: 

https://thereader.mitpress.mit.edu/the-staggering-ecological-impacts-of-computation-and-

the-cloud/ 

5.  Amazon Web Services. Sustainability Tools [Internet]. Amazon Web Services. 2025 [cited 2025 

Jul 10]. Available from: https://aws.amazon.com/sustainability/tools/ 

6.  Deochake S. Cloud Cost Optimization: A Comprehensive Review of Strategies and Case Studies. 

2023 Jul 24; Available from: http://arxiv.org/abs/2307.12479 

7.  Fluence. 5 Case Studies of Cloud Egress Fee Reduction and Slashing Data Costs [Internet]. 

Fluence. 2025 [cited 2025 Jul 10]. Available from: https://www.fluence.network/blog/5-case-

studies-of-cloud-egress-fee-reduction-and-slashing-data-costs/ 

8.  Amazon Web Services. Cost Optimization Pillar - AWS Well-Architected Framework. 2023;  

9.  Microsoft. Azure Reserved Virtual Machine Instances [Internet]. 2025 [cited 2025 Jul 10]. 

Available from: https://azure.microsoft.com/en-us/pricing/reserved-vm-instances/ 

10.  Pintaux N. Well-Architected Framework: Cost optimization pillar [Internet]. Google. 2024 [cited 

2025 Jul 10]. Available from: https://cloud.google.com/architecture/framework/cost-

optimization 

11.  Mazumdar S, Pranzo M. Power efficient server consolidation for Cloud data center. Future 

Generation Computer Systems. 2017 May;70:4–16.  

12.  Snyder P, Vastel A, Livshits B. Who Filters the Filters: Understanding the Growth, Usefulness and 

Efficiency of Crowdsourced Ad Blocking. Association for Computer Machinery [Internet]. 2020 

Jun 12 [cited 2025 Jul 10]; Available from: https://dl.acm.org/doi/10.1145/3392144 

13.  Mahgoub A, Yi EB, Shankar K, Elnikety S, Chaterji S, Bagchi S. Orion and the Three Rights: Sizing, 

Bundling, and Prewarming for Serverless DAGs ORION and the Three Rights: Sizing, Bundling, 



 

  
17 SUSTAINABLE CLOUD OPERATIONS FOR RESEARCH 

(SCORE) 

and Prewarming for Serverless DAGs [Internet]. Available from: 

https://www.usenix.org/conference/osdi22/presentation/mahgoub 

14.  Yildirim E, Kosar T. End-to-End Data-Flow Parallelism for Throughput Optimization in High-

Speed Networks. J Grid Comput. 2012 Sep 10;10(3):395–418.  

15.  Maltsev E, Muliarevych O. Beyond JSON: Evaluating Serialization Formats for Space-Efficient 

Communication. Advances in Cyber-Physical Systems. 2024 May 10;9(1):9–15.  

16.  Morschel L, Adeyemi O, Garonne V, Litvintsev D, Millar P, Mkrtchyan T, et al. Efficient Message 

Encoding For Inter-Service Communication in dCache: Evaluation of Existing Serialization 

Protocols as a Replacement for Java Object Serialization. EPJ Web Conf. 2020 Nov 16;245:05017.  

17.  Amazon Web Services. Auto Scaling for AWS Glue ETL and streaming jobs. AWS Glue Developer 

Guide [Internet]. [cited 2025 Aug 1]. Available from: 

https://docs.aws.amazon.com/glue/latest/dg/auto-scaling.html 

18.  Raza M, KS S, K S, Mohamad A. Carbon footprint reduction in cloud computing: Best practices 

and emerging trends. International Journal of Cloud Computing and Database Management. 

2024 Jan 1;5(1):25–33.  

19.  Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers RM. ChestX-ray8: Hospital-scale Chest X-ray 

Database and Benchmarks on Weakly-Supervised Classification and Localization of Common 

Thorax Diseases [Internet]. Available from: https://uts.nlm.nih.gov/metathesaurus.html 

  


