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Executive Summary

As cloud computing becomes a growing pillar for modern data intensive research, especially in fields
like global health, many organizations across low- and middle-income countries (LMICs) remain
hindered by operational constraints. These include limited DevOps capability, unreliable internet
connectivity, fixed grant ceilings, and growing demands for environmental sustainability. Standard
cloud architecture is based on stable infrastructure and high technical ability, making them neither
viable in terms of cost nor sustainability within LMICs environments.

This report introduces the Sustainable Cloud Operations for Research (SCORE) guidelines. It is a
guideline for context-specific cloud architecture models for LMICs research groups to optimize
architecture decisions for cost, performance, and carbon emissions. These guidelines consist of three
phases: Assessment, Selection, and Optimization. There are actionable opportunities at each step to
guide pipeline design and resource management under constrained operating conditions.

The guidelines were validated using the National Institutes of Health Chest X-ray dataset (42 GB). Three
Azure-native ingestion strategies based on the guidelines are compared: Synapse Pipelines (no-code),
Azure Functions (serverless), and Synapse Notebooks (code-based). Execution time, cost, and
emissions are tracked using Azure Monitor, Cost Management, and Emissions Insights tools. The
results revealed that the serverless approach (Azure Functions) achieved the lowest cost (USD 0.01),
lowest carbon emissions (0.00003 kg CO,e), and shortest execution time (1.12 hours), whereas the
Code approach (Synapse Notebooks) incurred the highest cost (USD 15.20) and emissions (0.16901 kg
CO.e), primarily due to a dedicated Spark pool. Additionally, geo-replication accounted for
approximately 85% of storage costs, highlighting the need for clearer understanding of cloud pricing
structures.

SCORE addresses a critical gap among existing cloud infrastructure guidelines. Rather than providing
broad best practices, it provides systematic guidelines in a practical iterative model that addresses the
fiscal, technical, and sustainability constraints that LMICs institutions face. The guidelines are designed
to be practical, scalable, and uniform in a range of research environments where cloud integration
must be efficient and sustainable.
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Introduction

Research in the Cloud

Cloud computing has become an essential part of modern research, offering scalability, flexibility, and
cost efficiency for data-intensive projects. For health research institutions, especially in low- and
middle-income countries (LMICs), cloud platforms make it possible to store, manage, and analyze large
datasets without the need to maintain costly on-prem infrastructure. 2 The cloud also supports secure
data collaboration across borders through approaches such as data de-identification, federated
learning, and digital twin modeling, which enables sensitive information to remain local while still
being shared for joint research.

However, despite these advantages, implementing cloud-based research in LMICs remains a challenge.
Teams often face limited DevOps expertise, unstable internet connectivity, rigid grant ceilings, and the
pressure to operate sustainably.® Most cloud systems provided by major vendors such as Amazon Web
Services (AWS), Google Cloud Platform (GCP), and Microsoft Azure are designed for high-income
countries with reliable infrastructure and specialized staff. As a result, LMIC institutions struggle to
adapt these systems to their realities, often experiencing unpredictable costs and underutilized
services.

At the same time, the environmental cost of cloud computing is growing. Data centers consume
massive amounts of power, contributing significantly to global greenhouse gas emissions.* Although
major providers now offer sustainability tools such as Microsoft’s Emissions Impact Dashboard and

Google’s Carbon Footprint, which require advanced technical knowledge and infrastructure that are

not always available in LMIC settings.®

To address these challenges, the Sustainable Cloud Operations for Research (SCORE) framework
provides practical, context-specific guidelines for designing cloud data pipelines, as the first step in
carrying out research in the cloud, balancing performance, affordability, and sustainability. SCORE
builds on five years of implementation experience through initiatives such as Utilizing Health
Information for Meaningful Impact in East Africa (UZIMA-DS), under the Data Science for Health

Discovery and Innovation in Africa (DSI-Africa) Consortium, which revealed the limitations of existing

cloud estimation tools and the need for structured, LMIC-oriented decision-making models.®

(SCORE)
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https://www.microsoft.com/en-us/sustainability/emissions-impact-dashboard?msockid=29f5ff93e058647c1cc4e984e1da65a3
https://cloud.google.com/carbon-footprint?hl=en
https://uzimadatascience.org/
https://uzimadatascience.org/
https://dsi-africa.org/
https://dsi-africa.org/

By focusing on three iterative phases, Assessment, Selection, and Optimization, SCORE helps research
teams systematically evaluate trade-offs between cost, performance, and environmental impact,
offering a scalable model for sustainable cloud adoption in LMIC research ecosystems.

Sustainable Cloud Operations for
Research (SCORE) Guidelines

How to Assess, Select and Optimize Research Data Pipelines in the Cloud

1.

Establish a structured

3.

Optimize pipelines for
cost, performance,
engineering capacity,
and environmental

profile of the project’s
operational
environment.
sustainability.

2.

Translate the assessment

profile into an architectural
pathway using pre-defined
pipeline archetypes

Figure 1: An Overview of the SCORE Guidelines
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Sustainable Cloud Operations for Research
(SCORE) Guidelines

The Sustainable Cloud Operations for Research (SCORE) guidelines are designed as a practical decision-
making model to guide the design, selection and implementation of cloud-based data pipelines in low-
resource research settings. It directly addresses the operational constraints faced by teams working in

LMICs contexts including: tight budgets, limited DevOps capacity, and intermittent connectivity, by
offering a structured process for making infrastructure decisions that balance performance, cost, and
environmental sustainability. The SCORE guidelines include the assessment of the operational
structure of the data profile, selection of the right ingestion pipeline, and optimization of the data
pipelines in the cloud. The guide takes a three-phase approach to systematically evaluate the expected
trade-offs of cost, performance, and carbon emissions. The guidelines are built around three phases:

Assessment Phase

The Assessment Phase forms the first step in the Sustainable Cloud Operations for Research (SCORE)
framework, providing a systematic method for evaluating the operational environment in which cloud-
based data pipelines will function. This phase identifies the contextual factors that influence whether
a cloud ingestion model can be deployed effectively, cost-efficiently, and sustainably.

SCORE defines seven design parameters summarized in Table 1 below, that ensure that LMIC research
teams make informed, context-aware choices before implementation, aligning pipeline design with
both technical realities and sustainability objectives.

(SCORE)
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Table 1. Data pipeline parameters for selecting an ingestion model that fits both the technical and
organizational context.

m Ingestion-Specific Implication LMICs Use Case

1. How flexible
must the cost
model be?

Fixed (strict ceiling),
Variable
(consumption-
based), Mixed.

Cost flexibility affects platform
choice. Serverless works well for
irregular patterns but may
become expensive for large files
or high throughput.

Mixed: Serverless
ingestion with
scheduled batch
pre-processing to
stay within grant
budget.

2. What is the
available
engineering
capacity?

Dedicated DevOps
team, Generalist
engineers, Low-code
or GUl-only teams.

Engineering profile dictates tool
complexity. No-code platforms
reduce friction but limit control.
DevOps teams can implement
pipelines using code and CI/CD.

Low-code: Pipelines
built with drag-and-
drop orchestration
tools, minimal
scripting required.

3. What is the
expected
volume of data

Small (KB to MB),
Medium (MB to GB),
Large (GB to TB),
Very Large (>TB).

Volume informs storage format,
compression method, and
transfer approach. Higher
volumes may require chunked
uploads, parallel transfer
clients, or external drives.

Medium: 6 GB per
week, accumulated
from edge devices
and uploaded
nightly.

4, What is the

One-time, Periodic,

Arrival patterns affect buffer

Intermittent: Daily

(pre-processing or
transformation).

data arrival Continuous, design, queuing, and uploads from field

pattern? Intermittent. orchestration triggers. teams using mobile
Intermittent uploads require data with frequent
retry logic and local caching. signal loss.

5. Is the No (pass-through Determines whether ingestion Light: Files

workload only), Light can be function-based or if it compressed and

Compute (compression or requires a pre-processing job validated before

intensive? validation), Heavy stage with dedicated compute. | storage, no

transformation.

6. What is the
frequency of
execution?

Scheduled, On-
demand, Event-
triggered,
Continuous.

Frequency shapes architecture.
High-frequency or continuous
ingest may need autoscaling;
infrequent ingest should avoid
idle cost via cold-start-
optimized functions.

Event-triggered:
Upload jobs initiated
when new files are
detected in a
watched folder.

7. What is the
state of
internet
reliability

Stable, Intermittent,
Offline (manual
sync).

Ingestion must tolerate sync
failures. This affects timeout
handling, retries, deduplication,
and support for out-of-band
uploads (e.g. USB).

Intermittent:
Uploads fail several
times per week and
retry automatically
using local buffer.

%UZIMEI%
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Selection Phase

Once a research team has assessed its context; budget limits, technical capacity, data size, and network
reliability, the next step is to select the right data ingestion model. The Selection Phase of SCORE
translates those findings into an actionable architectural decision tailored to the realities of low- and
middle-income country (LMIC) research environments.

In LMIC projects, cloud spending can quickly exceed expectations due to hidden operational costs such
as inter-region replication and network egress fees. For instance, during the setup of the UZIMA-DS
cloud research hub, about 30% of the annual cloud budget was consumed by unexpected configuration
costs. Studies show that unmanaged data transfer and replication can account for up to 6% of total
spending in data-centric cloud environments.” These costs often go unnoticed in standard pricing
calculators, making it difficult for teams with fixed budgets to experiment safely.

Therefore, pipeline selection in SCORE emphasizes understanding how data moves through the
system, including upload frequency, ingestion triggers, and potential points of failure. This pragmatic
approach ensures that infrastructure decisions are based on real-world performance and affordability
rather than theoretical best practices. Ultimately, SCORE’s Selection Phase prioritizes choosing a
pipeline that is fit-for-purpose, sustainable, and operable under LMIC constraints, not merely the most
sophisticated or feature-rich option.

The Total Cost of Research in the Cloud

Expected Costs fa Storage & Compute Fees Eﬁ:@)

Cloud Architectural Set-up

Hidden Costs & Network Egress Charges ‘ }

Unmanaged Data Transfer I:S:I

. N &
Inter-Region Replication @ g

Figure 2:The Total Cost of Research
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Table 2. Summarizes common ingestion pipeline archetypes, highlighting their best-fit use cases,

trade-offs, and practical relevance for LMICs settings

Pipeline Type m Key Trade-offs LMICs Use Case

Event-driven
serverless (e.g.
AWS Lambda,
Google Cloud
Functions, Azure

Lightweight ingestion
triggered by file uploads,
mobile syncs, or sensor
pushes.

Best for bursty, low-

Short runtime limits (5
to 15 min), cold start
latency, poor for
stateful or multi-step
logic.

A field survey app triggers
a cloud function to upload
encrypted form data after
each submission.

No infrastructure is kept

orchestration tools
(e.g. Azure Data
Factory, Google
Cloud Data Fusion,
Apache NiFi)

drop ingestion from
known sources.

Useful for low-
engineering
environments with
predictable workloads.

logic, debugging
overhead, connector-
based billing can grow
expensive.

GUI reliance can slow
collaboration.

Functions) throughput data with live between uploads.
cost sensitivity.
Low-code Scheduled or drag-and- Limited control over A generalist team uses a

visual tool to pull files
nightly from shared
folders into cloud storage.
The job runs unattended
on a fixed schedule.

Code-based batch
pipelines (e.g.
Apache Airflow,
custom Python
with SDKs, Spark

High-volume, compute-
heavy or customized
data workflows.

Allows deep control over
retries, transformations,

Requires skilled
engineers, ongoing
monitoring, and tuning
to avoid resource
waste.

A research lab ingests
large imaging files weekly,
transforms them using
Spark, and compresses
output to Parquet for

orchestration
models (e.g.
Functions with
queues and
notebooks, or Logic
Apps plus batch
processing)

frequencies, such as
real-time ingestion from
mobile devices and
batch processing of
uploads.

integration,
independent
monitoring, and
workflow
orchestration.

Harder to debug across
components.

ingestion) and error handling. Complex to maintain in | downstream analysis.
low-capacity teams.
Hybrid Workloads with mixed Requires tool A telemetry pipeline

triggers ingestion from
devices in real time while
scheduling batch jobs to
run weekly for
aggregation and cleanup.

Offline-first with
batch sync (e.g. loT
edge, USB upload
tools, mobile-to-
cloud sync bridges)

Sites with intermittent
or no connectivity.

Data is staged locally
and synced periodically.
Suitable for edge devices
or remote deployments.

Delayed monitoring,
risk of data loss if sync
fails.

Requires retry logic,
deduplication, and
metadata tracking.

Remote sensors write
data to SD cards. Data is
uploaded in batches via
mobile hotspot or USB
connection once the site
regains network access.

%uzma:ﬁ oara
v
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After selecting the right pipeline, the final step in the SCORE framework is the Optimization Phase. This
stage focuses on refining performance, minimizing cost, and ensuring environmental sustainability,
which are key priorities for research teams operating in resource-limited LMIC contexts.

Cost Optimization

Cost optimization begins with matching infrastructure to actual demand. Serverless tools like AWS
Lambda or Azure Functions can eliminate idle costs for intermittent workloads, while reserved
instances can reduce expenses by over 60% for continuous or 24/7 operations.®® Data compression
techniques such as GZIP or Parquet formats help lower storage and transfer fees, which is especially
critical where data movement costs are high.'° Regularly tagging resources by project or team exposes
hidden charges, such as unused virtual machines, often up to 30% of cloud environments remain idle
or abandoned, which can be mitigated through scheduled shutdowns.*

Performance Optimization

Performance optimization in LMIC environments often revolves around overcoming bandwidth
limitations and hardware disparities. Proven strategies include: mitigating cold starts by pre-warming
serverless functions, reducing latency by up to 90% for frequently invoked jobs;**® accelerating data
transfers using multi-part upload techniques, which can cut transfer times by 70-80% over high-
latency networks;* using binary data formats like Parquet or Avro to reduce payload size by up to 75%;
1516 dynamic batching, which adapts to network health, preventing bottlenecks during unstable
connections.’

Low-Skill Engineering Capacity

In many LMIC research environments, teams have limited DevOps and software engineering skills,
making it difficult to manage complex cloud systems effectively. The SCORE framework addresses this
by promoting automation and managed services that simplify deployment and maintenance. Tools
such as AWS Glue and Azure Data Factory automatically handle infrastructure scaling and monitoring,
reducing the need for specialized staff.'* To ensure consistent and rapid setup, SCORE recommends
Infrastructure-as-Code (laC) tools like Terraform or AWS CloudFormation, which use templates to
standardize deployments. Monitoring tools such as CloudWatch and Azure Monitor provide visual
dashboards for performance and cost tracking, removing reliance on command-line operations.

By adopting these managed and automated solutions, LMIC teams can maintain efficient, reliable, and
cost-effective data pipelines without extensive technical expertise, strengthening long-term
sustainability and scalability.'*

Through these optimizations, SCORE ensures that cloud operations remain affordable, efficient, and
environmentally responsible, making large-scale data science feasible in LMIC research ecosystems.
Once a pipeline type is selected, this phase introduces targeted strategies for tuning performance,
reducing cost, improving resilience, and minimizing environmental impact. After selecting pipeline
architecture, apply the following prescriptive techniques to optimize cost, performance, resilience, and
environmental impact. These are contextualized for research operations under LMICs constraints.

%uzma:ﬁége@m
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Table 3. Summarizes guidelines for cost, performance and low-skill engineering capacity

optimization, giving context on when to apply these techniques and practical relevance for LMICs

settings.

Technique

When to
Apply

Tactic

LMICs Use Case

Cost
Optimization

Use serverless For event- Use Azure Functions or Sensor data from
compute to avoid | driven or Data Factory with heart monitors
idle costs bursty jobs consumption tier.

Reserve compute When usage Use Reserved Instances Incoming EHR

only for consistent
workloads

exceeds 8-12
hrs./day or is
24/7

or pre-warmed Spark
pools.

data

Compress data Always Use GZip or Parquet to Integrating an

before ingestion reduce storage and EHR system with
egress fees. a cloud service

Avoid always-on During Use auto-shutdown When using

dev/test resources

development

policies on dev VMs and

multiple cloud-

data ingestion

Protocol Buffers

sandboxes. based virtual
machines
Enable granular Always Tag by pipeline stage, When managing
cost tagging dataset, and team for multiple data
audit-ready billing. pipelines/teams
Performance | *Pre-warm Frequent Timer-triggered Real-time sensor
Optimization | serverless ingestion invocations; AWS Lambda | telemetry
(>5/min) Provisioned Concurrency
Multi-part Files >100MB; | AWS S3 Transfer Satellite imagery
transfers high latency Acceleration; Azure Blob | ingestion
parallel upload
Binary serialization | Structured Parquet/Avro encoding; Clinical trial data

collection

Optimization

Adaptive batching | Unstable AWS Kinesis dynamic Flood sensor
networks batching; Azure Stream networks
Analytics watermarking
Low-Skill Managed ETL Limited AWS Glue, Azure Data Genomics
Engineering services DevOps skills Factory (serverless) metadata
Capacity ingestion

*Pre-warming serverless functions or pre-allocated Spark clusters may incur minimal constant cost. In

LMICs projects with strict ceilings, weigh costs against latency benefits.

(SCORE)
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Environmental Sustainability

Cloud computing has enabled rapid digital growth but also contributes significantly to global energy
consumption and greenhouse gas emissions.>!® The SCORE framework emphasizes environmentally
responsible design to balance performance with sustainability. Efficient data pipelines can reduce
carbon impact by optimizing how and when computing resources are used. SCORE recommends
scheduling workloads during low-carbon intensity periods using tools like Azure Emissions Dashboard
or WattTime APIs, and prioritizing data centers powered by renewable energy. Regular workload
profiling ensures that compute resources are “right sized,” preventing waste from over-provisioned
virtual machines. Tracking emissions through platforms such as Microsoft Sustainability Manager
supports transparency and accountability.

By integrating these green engineering practices, LMIC research teams can reduce operational costs

while minimizing environmental harm, advancing both scientific and ecological sustainability within

their data-driven health research operations.?*®

Global GHG Emissions by Sector in 2040

14% ICT Sector

86% Others

Figure 3: Global GHG Emissions per sector by 2040. Source: Hitesh Allam, Sustainable Cloud Engineering: Optimizing
Resources for Green DevOps. International Journal of Artificial Intelligence, Data Science, and Machine Learning (2023)
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Testing our Concept

Approach

To evaluate the practical relevance of the SCORE framework, we conducted an applied test simulating
real-world cloud-based research conditions. The objective was to determine whether SCORE’s
recommendations could guide the design of cost-efficient and environmentally sustainable data
ingestion pipelines in a low- and middle-income country (LMIC) context.

The test used the NIH Chest X-ray14 dataset, a large open-access dataset comprising 112,120 chest
radiographs from 30,805 patients, totaling approximately 42 GB.® This dataset was selected because
of its substantial size and suitability for benchmarking performance, even though its content was not
directly relevant to the study’s health outcomes. The experiment focused on a single, repeatable task:
data ingestion, moving data from a source repository into Azure cloud storage. To produce consistent
and reliable metrics, the ingestion process was repeated ten times under the same conditions.

Three Azure-native tools; Synapse Pipelines (no-code), Azure Functions (serverless), and Synapse
Notebooks (code-based), were compared using the same dataset and parameters. To capture
outcomes, the study employed Azure Cost Management to measure financial efficiency, Azure Monitor
/ Log Analytics to assess performance (execution time, CPU, and memory usage), and the Azure Carbon
Optimization Tool to estimate emissions. Together, these tools provided a comprehensive view of the
relationship between cloud architecture choices, cost, and environmental impact, validating SCORE as
a practical, data-driven approach to sustainable cloud operations for LMIC research environments.

(SCORE)
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Table 4. Gives a description of each resource group and its purpose

Approach

Synapse Pipelines (No-Code)

Description

A no-code data integration and
orchestration tool within Azure
Synapse, allowing workflow
automation without extensive
coding.

Purpose

Evaluates efficiency of a fully
managed, no-code orchestration
system with automatic execution
optimizations.

Synapse Notebooks (Code,
Python)

A code-based interactive
computing environment using
Python, enabling custom
scripting and fine-tuned control
over data processing. Requires
mounting to a compute
resource.

Assesses resource usage and
performance when users have direct
control over the back-end code and
computation.

Azure Functions (Serverless)

An event-driven, serverless
compute service that
dynamically scales based on
workload demand, eliminating
idle resource costs.

Explores efficiency of a fully
serverless model where resources
are allocated dynamically, reducing
potential idle usage costs.

Although our three primary metrics were cost efficiency, time efficiency, and environmental impact,

additional metrics such as write/storage costs and geo-replication v2 data transfer were also
considered as they demonstrated a significant bearing on the overall costs (Table 5). Execution time
was collected immediately after task completion for each approach. Cost and carbon emissions were

retrieved from Azure once the monthly data was released.

Table 5. Primary metrics and associated measurements and considerations

Metric Definition Measurement Measurement Considerations
Tool
Cost Reduction in Cost = Usage Azure Cost Unit price varies due to
Efficiency operational costs | Quantity Management | negotiated pricing, demand,
without (standard) x + Billing location, etc. Actual costs
compromising Unit Price (non- may be under NDAs, limiting
performance. standard). transparency.
Time Reduced Execution time | Azure Measured in
Efficiency execution time measured from | Monitor / Log | seconds/milliseconds;
for data task initiation Analytics variability introduced by
processing tasks. | to completion. cold starts, system
overhead, and queue wait
times, i.e., may not measure
CPU runtime.

SUSTAINABLE CLOUD OPERATIONS FOR RESEARCH
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Environmental | Decrease in Carbon Azure Carbon | Carbon intensity depends on

Impact carbon emissions | Emissions = Optimization | grid mix, data center
and energy Energy Tool location, and regulations.
consumption. Consumption Azure aggregates emissions
(standard) x at the monthly and resource
Carbon group level, reducing
Intensity (non- granularity.
standard).
Write/Storage | Charges incurred | Based on the Azure Cost Rarely accessed data can
Cost when data is total volume of | Management | accumulate significant
added /updated data written + Billing charges if not optimized.
and/or stored in and stored (in
the pipeline. GB).
Geo- Movement of Billing is per GB | Azure Cost The volume and frequency
Replication v2 | data between of data Management | of data changes, the
Data Transfer | geographically replicated + Billing distance between regions,
distributed Azure | across regions. and the chosen storage tier
regions under the have an impact on the
Version 2 geo- overall cost.
replication
model.

*The hierarchy for Azure resources is as follows: Subscription > Resource Group > (Resource) Azure Synapse
Analytics > Pipeline > Activity.

Outcome Metrics and Results

The Azure Functions (Serverless) approach delivered the best overall performance, recording the
lowest cost (USD 0.01), lowest carbon emissions (0.00003 kg CO,e), and shortest execution time
(1.12 hours). This efficiency was attributed to serverless computing’s ability to allocate resources
dynamically, only when needed, avoiding idle costs. The Synapse Pipelines (No-Code) model
performed moderately well, costing USD 1.68, emitting 0.01873 kg CO,e, and taking 6.9 hours to
complete. Its visual, managed environment simplified orchestration but added some latency due to
additional backend processes like scheduling and logging.

In contrast, the Synapse Notebooks (Code-Based) approach was the least efficient, costing USD 15.20
and generating 0.16901 kg CO,e, with a runtime of 5.74 hours. Most of these costs were driven by a
dedicated Spark pool, which remained active even when idle. Additionally, geo-replication accounted
for roughly 85% of storage costs, underscoring how data movement and redundancy can significantly
affect budgets. Overall, these results confirm that serverless ingestion pipelines, when aligned with
SCORE guidelines, offer the most sustainable and cost-effective approach for LMIC research
operations.

(SCORE)
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Table 6. Performance Metrics for One-Time Data Ingestion and Storage and Data Transfer Costs

Approach

Synapse Azure Functions Synapse Notebooks
Pipelines (No- (Serverless Code) (Code, Python)
Code)
Cost (USD)
1.68 0.01 15.20*
Carbon Emissions (kg CO,e)
0.01873 0.00003 0.16901
Execution Time (hours)
6.90 1.12 5.74
Write/Storage Cost (USD)
1.56 1.75 1.55
Geo-Replication v2 Data
Transfer (USD) 8.73 9.61 8.73

*The cost for Synapse Notebooks includes $0.01 for the Synapse Workspace and $15.19 for the
Dedicated Spark Pool.

Discussion

The results of the SCORE proof of concept challenged common assumptions about the efficiency and
sustainability of cloud-based data ingestion methods. The research team initially expected that code-
based pipelines, such as Synapse Notebooks, would be the most cost-effective and environmentally
sustainable due to their flexibility and potential for code-level optimization. However, the findings
revealed the opposite: dedicated compute environments like Spark pools substantially increased both
cost and carbon emissions, accounting for nearly all of the expenses in that approach.

This pattern mirrors ongoing research within LMIC research environments, where compute-intensive
and security-heavy resources are often the largest contributors to both financial and environmental
overheads. These insights highlight the importance of careful infrastructure planning and demonstrate
that high-performance configurations are not always the most sustainable or affordable choices in
resource-limited contexts. Conversely, serverless models, specifically Azure Functions, outperformed
other configurations in every key metric: lowest cost (USD 0.01), lowest carbon emissions (0.00003 kg
CO.e), and shortest execution time (1.12 hours). Serverless architectures dynamically allocate
computing power based on demand, eliminating idle resource costs and improving both economic and
environmental efficiency.

Interestingly, storage costs remained fairly consistent across all methods, but geo-replication
accounted for roughly 85% of those costs, emphasizing how easily overlooked pricing factors can
inflate budgets. Teams frequently underestimate egress and replication fees, assuming these services
are low-cost or included. The study’s results reinforce the need for clearer understanding of cloud
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provider pricing models and for transparent budgeting frameworks suited to LMIC research
institutions. Overall, the results affirm SCORE’s value as a context-aware guideline that enables
researchers to make evidence-based infrastructure decisions, balancing performance, cost control,
and environmental responsibility across diverse research environments.

Considerations and Future Directions

While the SCORE framework offers a structured, evidence-based approach for building sustainable
cloud operations in LMIC research environments, several considerations must guide future refinement
and broader implementation. The current validation was conducted exclusively on Microsoft Azure,
meaning that results may vary across other major platforms such as AWS and Google Cloud Platform
(GCP), where architecture, pricing, and sustainability tools differ. Expanding SCORE testing across
multiple cloud providers will help confirm its generalizability and reveal platform-specific nuances that
affect cost and emissions.

Additionally, the validation focused primarily on data ingestion workflows. To fully evaluate SCORE’s
versatility, further studies should include more complex pipeline stages, such as data transformation,
analysis, and GPU-intensive machine learning workloads. Such tasks often behave differently under
variable compute and storage conditions. Another limitation involves the granularity of emissions data.
Azure’s current tools aggregate carbon metrics monthly at the resource-group level, which makes it
difficult to capture emissions from individual tasks in real time. Until finer-grained tracking becomes
available, LMIC teams may need to rely on proxy metrics for environmental optimization.

Finally, successful SCORE adoption depends on capacity building. Many research teams in LMICs have
limited cloud literacy, emphasizing the need for training programs, documentation, and community-
based support systems to ensure practical implementation.

(SCORE)
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Conclusion

This paper introduces SCORE guidelines that aim to enable LMIC research teams to navigate the triple
constraints of cost efficiency, technical feasibility, and environmental sustainability in cloud-based data
pipelines. Through a structured three-step approach, Assessment, Selection, and Optimization, SCORE
addresses critical gaps in existing cloud guidance by contextualizing, quantifying tradeoffs, prioritizing
practicality, and advancing sustainability. Future work should expand SCORE’s validation to multi-cloud
environments, other LMICs deployments, and advanced pipeline stages (e.g., distributed ML training).
Integration with open-source monitoring tools could further reduce dependency on proprietary
solutions. By democratizing sustainable cloud practices, SCORE empowers LMICs researchers to
leverage cloud infrastructure as an equitable, scalable, and ecologically conscious foundation for
scientific advancement.

Achieving Sustainable Cloud Pipelines for Research Data

Inefficient Sustainable

Assessment Selection Optimization Cloud Data
Cloud Data Pipelines
Pipelines Optimize for P
Choose practical performance, cost, Robust, scalable,
Costly, difficult to Evaluate your data architecture for engineering efficient, and
manage, profile and its the right capacity and ecologically
unsustainable needs ingestion model sustainability conscious

Figure 4: Bridging the Cloud Research Gap in LMICs
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