

SUSTAINABLE CLOUD OPERATIONS FOR RESEARCH

(SCORE)

A Guideline for Cost-Efficient and Carbon-Aware Data Pipelines Design in Low- and Middle-Income Countries Research

SUSTAINABLE CLOUD OPERATIONS FOR RESEARCH (SCORE)

A Guideline for Cost-Efficient and Carbon-Aware Data Pipeline Design in Low- and Middle-Income Countries Research

Nigel Kamotho¹, Allan Zablon¹, Stephen Wong¹, Amos Bunde¹, Antony Kagure¹, Thembi Kiiru¹, Anthony K. Ngugi², Amina Abubakar³, Akbar K. Waljee^{4,5}, Farhana Alarakhiya¹

Affiliations

¹Data Innovation Office, Aga Khan University, Nairobi, Kenya

²Department of Population Health, Aga Khan University, Nairobi, Kenya

³Institute for Human Development, Aga Khan University, Nairobi, Kenya

⁴Center for Global Health Equity, University of Michigan, Michigan, USA

⁵Department of Learning Health Sciences, Michigan Medicine, University of Michigan, Michigan, USA

Executive Summary

As cloud computing becomes a growing pillar for modern data intensive research, especially in fields like global health, many organizations across low- and middle-income countries (LMICs) remain hindered by operational constraints. These include limited DevOps capability, unreliable internet connectivity, fixed grant ceilings, and growing demands for environmental sustainability. Standard cloud architecture is based on stable infrastructure and high technical ability, making them neither viable in terms of cost nor sustainability within LMICs environments.

This report introduces the Sustainable Cloud Operations for Research (SCORE) guidelines. It is a guideline for context-specific cloud architecture models for LMICs research groups to optimize architecture decisions for cost, performance, and carbon emissions. These guidelines consist of three phases: Assessment, Selection, and Optimization. There are actionable opportunities at each step to guide pipeline design and resource management under constrained operating conditions.

The guidelines were validated using the National Institutes of Health Chest X-ray dataset (42 GB). Three Azure-native ingestion strategies based on the guidelines are compared: Synapse Pipelines (no-code), Azure Functions (serverless), and Synapse Notebooks (code-based). Execution time, cost, and emissions are tracked using Azure Monitor, Cost Management, and Emissions Insights tools. The results revealed that the serverless approach (Azure Functions) achieved the lowest cost (USD 0.01), lowest carbon emissions (0.00003 kg CO_2e), and shortest execution time (1.12 hours), whereas the Code approach (Synapse Notebooks) incurred the highest cost (USD 15.20) and emissions (0.16901 kg CO_2e), primarily due to a dedicated Spark pool. Additionally, geo-replication accounted for approximately 85% of storage costs, highlighting the need for clearer understanding of cloud pricing structures.

SCORE addresses a critical gap among existing cloud infrastructure guidelines. Rather than providing broad best practices, it provides systematic guidelines in a practical iterative model that addresses the fiscal, technical, and sustainability constraints that LMICs institutions face. The guidelines are designed to be practical, scalable, and uniform in a range of research environments where cloud integration must be efficient and sustainable.

Table of Contents

Executive Summary	iii
Glossary	v
Introduction	1
Research in the Cloud	1
Sustainable Cloud Operations for Research (SCORE) Guidelines	3
Assessment Phase	3
Selection Phase	5
Optimization Phase	7
Cost Optimization	7
Performance Optimization	7
Low-Skill Engineering Capacity	7
Environmental Sustainability	9
Testing our Concept	10
Approach	10
Outcome Metrics and Results	12
Discussion	13
Considerations and Future Directions	14
Conclusion	15
References	16

Glossary

AWS — Amazon Web Services

BI Business Intelligence

CO₂ Carbon Dioxide

DLQ Dead-Letter Queue

DSI-Africa Data Science for Health Discovery and Innovation in Africa Consortium

ETL Extract, Transform, Load

GB Gigabyte

GHG Greenhouse Gases

GHSP Global Health and Science Practice

GCP Google Cloud Platform

GPU Graphics Processing Unit (inferred contextually)

HIC High Income Country

IaC Infrastructure as Code

I/O Input/Output

IoT Internet of Things

KB Kilobyte

kgCO₂e Kilograms of Carbon Dioxide Equivalent

Low- and Middle-Income Countries

MB Megabyte

ML Machine Learning

NDAs Non-Disclosure Agreements

NIH National Institutes of Health

RAM Random Access Memory

SCORE Sustainable Cloud Operations for Research

USD United States Dollar

UZIMA – DS Utilizing Health Information for Meaningful Impact in East Africa

VM Virtual Machine

Introduction

Research in the Cloud

Cloud computing has become an essential part of modern research, offering scalability, flexibility, and cost efficiency for data-intensive projects. For health research institutions, especially in low- and middle-income countries (LMICs), cloud platforms make it possible to store, manage, and analyze large datasets without the need to maintain costly on-prem infrastructure. ^{1,2} The cloud also supports secure data collaboration across borders through approaches such as data de-identification, federated learning, and digital twin modeling, which enables sensitive information to remain local while still being shared for joint research.

However, despite these advantages, implementing cloud-based research in LMICs remains a challenge. Teams often face limited DevOps expertise, unstable internet connectivity, rigid grant ceilings, and the pressure to operate sustainably.³ Most cloud systems provided by major vendors such as Amazon Web Services (AWS), Google Cloud Platform (GCP), and Microsoft Azure are designed for high-income countries with reliable infrastructure and specialized staff. As a result, LMIC institutions struggle to adapt these systems to their realities, often experiencing unpredictable costs and underutilized services.

At the same time, the environmental cost of cloud computing is growing. Data centers consume massive amounts of power, contributing significantly to global greenhouse gas emissions.⁴ Although major providers now offer sustainability tools such as <u>Microsoft's Emissions Impact Dashboard</u> and <u>Google's Carbon Footprint</u>, which require advanced technical knowledge and infrastructure that are not always available in LMIC settings.⁵

To address these challenges, the Sustainable Cloud Operations for Research (SCORE) framework provides practical, context-specific guidelines for designing cloud data pipelines, as the first step in carrying out research in the cloud, balancing performance, affordability, and sustainability. SCORE builds on five years of implementation experience through initiatives such as Utilizing Health Information for Meaningful Impact in East Africa (UZIMA-DS), under the Data Science for Health Discovery and Innovation in Africa (DSI-Africa) Consortium, which revealed the limitations of existing cloud estimation tools and the need for structured, LMIC-oriented decision-making models.⁶

By focusing on three iterative phases, Assessment, Selection, and Optimization, SCORE helps research teams systematically evaluate trade-offs between cost, performance, and environmental impact, offering a scalable model for sustainable cloud adoption in LMIC research ecosystems.

Sustainable Cloud Operations for Research (SCORE) Guidelines

How to Assess, Select and Optimize Research Data Pipelines in the Cloud

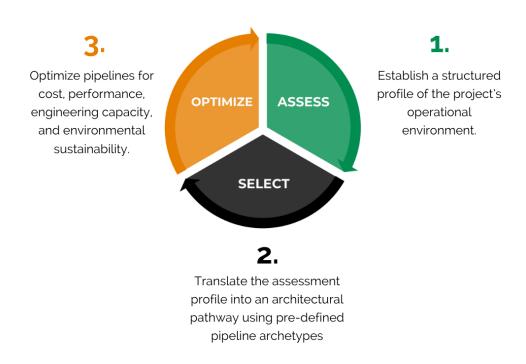


Figure 1: An Overview of the SCORE Guidelines

Sustainable Cloud Operations for Research (SCORE) Guidelines

The Sustainable Cloud Operations for Research (SCORE) guidelines are designed as a practical decision-making model to guide the design, selection and implementation of cloud-based data pipelines in low-resource research settings. It directly addresses the operational constraints faced by teams working in LMICs contexts including: tight budgets, limited DevOps capacity, and intermittent connectivity, by offering a structured process for making infrastructure decisions that balance performance, cost, and environmental sustainability. The SCORE guidelines include the assessment of the operational structure of the data profile, selection of the right ingestion pipeline, and optimization of the data pipelines in the cloud. The guide takes a three-phase approach to systematically evaluate the expected trade-offs of cost, performance, and carbon emissions. The guidelines are built around three phases:

Assessment Phase

The Assessment Phase forms the first step in the Sustainable Cloud Operations for Research (SCORE) framework, providing a systematic method for evaluating the operational environment in which cloud-based data pipelines will function. This phase identifies the contextual factors that influence whether a cloud ingestion model can be deployed effectively, cost-efficiently, and sustainably.

SCORE defines seven design parameters summarized in **Table 1** below, that ensure that LMIC research teams make informed, context-aware choices before implementation, aligning pipeline design with both technical realities and sustainability objectives.

Table 1. Data pipeline parameters for selecting an ingestion model that fits both the technical and organizational context.

Question	Design Dimension	Ingestion-Specific Implication	LMICs Use Case
1. How flexible	Fixed (strict ceiling),	Cost flexibility affects platform	Mixed: Serverless
must the cost	Variable	choice. Serverless works well for	ingestion with
model be?	(consumption-	irregular patterns but may	scheduled batch
	based), Mixed.	become expensive for large files	pre-processing to
		or high throughput.	stay within grant
			budget.
2. What is the	Dedicated DevOps	Engineering profile dictates tool	Low-code: Pipelines
available	team, Generalist	complexity. No-code platforms	built with drag-and-
engineering	engineers, Low-code	reduce friction but limit control.	drop orchestration
capacity?	or GUI-only teams.	DevOps teams can implement	tools, minimal
		pipelines using code and CI/CD.	scripting required.
3. What is the	Small (KB to MB),	Volume informs storage format,	Medium: 6 GB per
expected	Medium (MB to GB),	compression method, and	week, accumulated
volume of data	Large (GB to TB),	transfer approach. Higher	from edge devices
	Very Large (>TB).	volumes may require chunked	and uploaded
		uploads, parallel transfer	nightly.
		clients, or external drives.	
4. What is the	One-time, Periodic,	Arrival patterns affect buffer	Intermittent: Daily
data arrival	Continuous,	design, queuing, and	uploads from field
pattern?	Intermittent.	orchestration triggers.	teams using mobile
		Intermittent uploads require	data with frequent
		retry logic and local caching.	signal loss.
5. Is the	No (pass-through	Determines whether ingestion	Light: Files
workload	only), Light	can be function-based or if it	compressed and
Compute	(compression or	requires a pre-processing job	validated before
intensive?	validation), Heavy	stage with dedicated compute.	storage, no
	(pre-processing or		transformation.
	transformation).		
6. What is the	Scheduled, On-	Frequency shapes architecture.	Event-triggered:
frequency of	demand, Event-	High-frequency or continuous	Upload jobs initiated
execution?	triggered,	ingest may need autoscaling;	when new files are
	Continuous.	infrequent ingest should avoid	detected in a
		idle cost via cold-start-	watched folder.
	6. 11	optimized functions.	
7. What is the	Stable, Intermittent,	Ingestion must tolerate sync	Intermittent:
state of	Offline (manual	failures. This affects timeout	Uploads fail several
internet	sync).	handling, retries, deduplication,	times per week and
reliability		and support for out-of-band	retry automatically
		uploads (e.g. USB).	using local buffer.

Selection Phase

Once a research team has assessed its context; budget limits, technical capacity, data size, and network reliability, the next step is to select the right data ingestion model. The Selection Phase of SCORE translates those findings into an actionable architectural decision tailored to the realities of low- and middle-income country (LMIC) research environments.

In LMIC projects, cloud spending can quickly exceed expectations due to hidden operational costs such as inter-region replication and network egress fees. For instance, during the setup of the UZIMA-DS cloud research hub, about 30% of the annual cloud budget was consumed by unexpected configuration costs. Studies show that unmanaged data transfer and replication can account for up to 6% of total spending in data-centric cloud environments.⁷ These costs often go unnoticed in standard pricing calculators, making it difficult for teams with fixed budgets to experiment safely.

Therefore, pipeline selection in SCORE emphasizes understanding how data moves through the system, including upload frequency, ingestion triggers, and potential points of failure. This pragmatic approach ensures that infrastructure decisions are based on real-world performance and affordability rather than theoretical best practices. Ultimately, SCORE's Selection Phase prioritizes choosing a pipeline that is fit-for-purpose, sustainable, and operable under LMIC constraints, not merely the most sophisticated or feature-rich option.

The Total Cost of Research in the Cloud

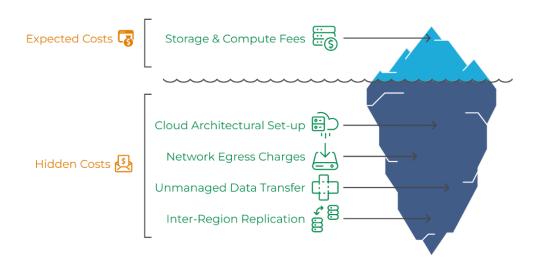


Figure 2:The Total Cost of Research

Table 2. Summarizes common ingestion pipeline archetypes, highlighting their best-fit use cases, trade-offs, and practical relevance for LMICs settings

Pipeline Type	Best Fit	Key Trade-offs	LMICs Use Case
Event-driven	Lightweight ingestion	Short runtime limits (5	A field survey app triggers
serverless (e.g. AWS Lambda,	triggered by file uploads,	to 15 min), cold start	a cloud function to upload
,	mobile syncs, or sensor	latency, poor for	encrypted form data after each submission.
Google Cloud	pushes.	stateful or multi-step	
Functions, Azure	Best for bursty, low-	logic.	No infrastructure is kept
Functions)	throughput data with		live between uploads.
Low code	cost sensitivity.	Limited control over	A ganaralist taam usas a
Low-code	Scheduled or drag-and-	Limited control over	A generalist team uses a
orchestration tools	drop ingestion from	logic, debugging	visual tool to pull files
(e.g. Azure Data	known sources.	overhead, connector-	nightly from shared
Factory, Google	Useful for low-	based billing can grow	folders into cloud storage.
Cloud Data Fusion,	engineering 	expensive.	The job runs unattended
Apache NiFi)	environments with	GUI reliance can slow	on a fixed schedule.
	predictable workloads.	collaboration.	
Code-based batch	High-volume, compute-	Requires skilled	A research lab ingests
pipelines (e.g.	heavy or customized	engineers, ongoing	large imaging files weekly,
Apache Airflow,	data workflows.	monitoring, and tuning	transforms them using
custom Python	Allows deep control over	to avoid resource	Spark, and compresses
with SDKs, Spark	retries, transformations,	waste.	output to Parquet for
ingestion)	and error handling.	Complex to maintain in	downstream analysis.
		low-capacity teams.	
Hybrid	Workloads with mixed	Requires tool	A telemetry pipeline
orchestration	frequencies, such as	integration,	triggers ingestion from
models (e.g.	real-time ingestion from	independent	devices in real time while
Functions with	mobile devices and	monitoring, and	scheduling batch jobs to
queues and	batch processing of	workflow	run weekly for
notebooks, or Logic	uploads.	orchestration.	aggregation and cleanup.
Apps plus batch		Harder to debug across	
processing)		components.	
Offline-first with	Sites with intermittent	Delayed monitoring,	Remote sensors write
batch sync (e.g. IoT	or no connectivity.	risk of data loss if sync	data to SD cards. Data is
edge, USB upload	Data is staged locally	fails.	uploaded in batches via
tools, mobile-to-	and synced periodically.	Requires retry logic,	mobile hotspot or USB
cloud sync bridges)	Suitable for edge devices	deduplication, and	connection once the site
	or remote deployments.	metadata tracking.	regains network access.

Optimization Phase

After selecting the right pipeline, the final step in the SCORE framework is the Optimization Phase. This stage focuses on refining performance, minimizing cost, and ensuring environmental sustainability, which are key priorities for research teams operating in resource-limited LMIC contexts.

Cost Optimization

Cost optimization begins with matching infrastructure to actual demand. Serverless tools like AWS Lambda or Azure Functions can eliminate idle costs for intermittent workloads, while reserved instances can reduce expenses by over 60% for continuous or 24/7 operations.^{8,9} Data compression techniques such as GZIP or Parquet formats help lower storage and transfer fees, which is especially critical where data movement costs are high.¹⁰ Regularly tagging resources by project or team exposes hidden charges, such as unused virtual machines, often up to 30% of cloud environments remain idle or abandoned, which can be mitigated through scheduled shutdowns.¹¹

Performance Optimization

Performance optimization in LMIC environments often revolves around overcoming bandwidth limitations and hardware disparities. Proven strategies include: mitigating cold starts by pre-warming serverless functions, reducing latency by up to 90% for frequently invoked jobs;^{12,13} accelerating data transfers using multi-part upload techniques, which can cut transfer times by 70–80% over high-latency networks;¹⁴ using binary data formats like Parquet or Avro to reduce payload size by up to 75%; ^{15,16} dynamic batching, which adapts to network health, preventing bottlenecks during unstable connections.¹⁷

Low-Skill Engineering Capacity

In many LMIC research environments, teams have limited DevOps and software engineering skills, making it difficult to manage complex cloud systems effectively. The SCORE framework addresses this by promoting automation and managed services that simplify deployment and maintenance. Tools such as AWS Glue and Azure Data Factory automatically handle infrastructure scaling and monitoring, reducing the need for specialized staff.¹⁴ To ensure consistent and rapid setup, SCORE recommends Infrastructure-as-Code (IaC) tools like Terraform or AWS CloudFormation, which use templates to standardize deployments. Monitoring tools such as CloudWatch and Azure Monitor provide visual dashboards for performance and cost tracking, removing reliance on command-line operations.

By adopting these managed and automated solutions, LMIC teams can maintain efficient, reliable, and cost-effective data pipelines without extensive technical expertise, strengthening long-term sustainability and scalability.¹⁴

Through these optimizations, SCORE ensures that cloud operations remain affordable, efficient, and environmentally responsible, making large-scale data science feasible in LMIC research ecosystems. Once a pipeline type is selected, this phase introduces targeted strategies for tuning performance, reducing cost, improving resilience, and minimizing environmental impact. After selecting pipeline architecture, apply the following prescriptive techniques to optimize cost, performance, resilience, and environmental impact. These are contextualized for research operations under LMICs constraints.

Table 3. Summarizes guidelines for cost, performance and low-skill engineering capacity optimization, giving context on when to apply these techniques and practical relevance for LMICs settings.

Settings.	Technique	When to	Tactic	LMICs Use Case
		Apply		
Cost	Use serverless	For event-	Use Azure Functions or	Sensor data from
Optimization	compute to avoid	driven or	Data Factory with	heart monitors
	idle costs	bursty jobs	consumption tier.	
	Reserve compute	When usage	Use Reserved Instances	Incoming EHR
	only for consistent	exceeds 8–12	or pre-warmed Spark	data
	workloads	hrs./day or is 24/7	pools.	
	Compress data	Always	Use GZip or Parquet to	Integrating an
	before ingestion		reduce storage and	EHR system with
			egress fees.	a cloud service
	Avoid always-on	During	Use auto-shutdown	When using
	dev/test resources	development	policies on dev VMs and	multiple cloud-
			sandboxes.	based virtual
	Enoble granular	Alwaye	Tag by pipaling stage	machines
	Enable granular cost tagging	Always	Tag by pipeline stage, dataset, and team for	When managing multiple data
	cost tagging		audit-ready billing.	pipelines/teams
Performance	*Pre-warm	Frequent	Timer-triggered	Real-time sensor
Optimization	serverless	ingestion	invocations; AWS Lambda	telemetry
Optimization	3C1 VC11C33	(>5/min)	Provisioned Concurrency	teleffietry
	N.A Iti:	, , ,	AWS S3 Transfer	Catallita imaganı
	Multi-part transfers	Files >100MB; high latency	Acceleration; Azure Blob	Satellite imagery ingestion
	transiers	riigii iatericy	parallel upload	iligestion
	Discourse dell'agreement	Circulate de		Clinia de Calada
	Binary serialization	Structured	Parquet/Avro encoding; Protocol Buffers	Clinical trial data collection
		data ingestion	Protocor Bullers	Collection
	A doubling batable	llastabl-	ANA/C I/impoint the second	
	Adaptive batching	Unstable networks	AWS Kinesis dynamic batching; Azure Stream	Flood sensor networks
		Hetworks	Analytics watermarking	Hetworks
Low-Skill	Managed ETL	Limited	AWS Glue, Azure Data	Genomics
Engineering	services	DevOps skills	Factory (serverless)	metadata
Capacity				ingestion
Optimization				

^{*}Pre-warming serverless functions or pre-allocated Spark clusters may incur minimal constant cost. In LMICs projects with strict ceilings, weigh costs against latency benefits.

Environmental Sustainability

Cloud computing has enabled rapid digital growth but also contributes significantly to global energy consumption and greenhouse gas emissions.^{2,18} The SCORE framework emphasizes environmentally responsible design to balance performance with sustainability. Efficient data pipelines can reduce carbon impact by optimizing how and when computing resources are used. SCORE recommends scheduling workloads during low-carbon intensity periods using tools like Azure Emissions Dashboard or WattTime APIs, and prioritizing data centers powered by renewable energy. Regular workload profiling ensures that compute resources are "right sized," preventing waste from over-provisioned virtual machines. Tracking emissions through platforms such as *Microsoft Sustainability Manager* supports transparency and accountability.

By integrating these green engineering practices, LMIC research teams can reduce operational costs while minimizing environmental harm, advancing both **scientific and ecological sustainability** within their data-driven health research operations.^{2,18}

Global GHG Emissions by Sector in 2040

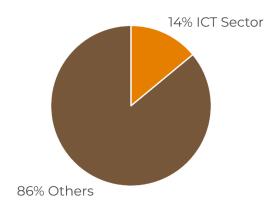


Figure 3: Global GHG Emissions per sector by 2040. Source: Hitesh Allam, Sustainable Cloud Engineering: Optimizing Resources for Green DevOps. International Journal of Artificial Intelligence, Data Science, and Machine Learning (2023)

Testing our Concept

Approach

To evaluate the practical relevance of the SCORE framework, we conducted an applied test simulating real-world cloud-based research conditions. The objective was to determine whether SCORE's recommendations could guide the design of cost-efficient and environmentally sustainable data ingestion pipelines in a low- and middle-income country (LMIC) context.

The test used the NIH Chest X-ray14 dataset, a large open-access dataset comprising 112,120 chest radiographs from 30,805 patients, totaling approximately 42 GB.¹⁹ This dataset was selected because of its substantial size and suitability for benchmarking performance, even though its content was not directly relevant to the study's health outcomes. The experiment focused on a single, repeatable task: data ingestion, moving data from a source repository into Azure cloud storage. To produce consistent and reliable metrics, the ingestion process was repeated ten times under the same conditions.

Three Azure-native tools; Synapse Pipelines (no-code), Azure Functions (serverless), and Synapse Notebooks (code-based), were compared using the same dataset and parameters. To capture outcomes, the study employed Azure Cost Management to measure financial efficiency, Azure Monitor / Log Analytics to assess performance (execution time, CPU, and memory usage), and the Azure Carbon Optimization Tool to estimate emissions. Together, these tools provided a comprehensive view of the relationship between cloud architecture choices, cost, and environmental impact, validating SCORE as a practical, data-driven approach to sustainable cloud operations for LMIC research environments.

Table 4. Gives a description of each resource group and its purpose

Approach	Description	Purpose
Synapse Pipelines (No-Code)	A no-code data integration and orchestration tool within Azure Synapse, allowing workflow automation without extensive coding.	Evaluates efficiency of a fully managed, no-code orchestration system with automatic execution optimizations.
Synapse Notebooks (Code, Python)	A code-based interactive computing environment using Python, enabling custom scripting and fine-tuned control over data processing. Requires mounting to a compute resource.	Assesses resource usage and performance when users have direct control over the back-end code and computation.
Azure Functions (Serverless)	An event-driven, serverless compute service that dynamically scales based on workload demand, eliminating idle resource costs.	Explores efficiency of a fully serverless model where resources are allocated dynamically, reducing potential idle usage costs.

Although our three primary metrics were cost efficiency, time efficiency, and environmental impact, additional metrics such as write/storage costs and geo-replication v2 data transfer were also considered as they demonstrated a significant bearing on the overall costs (**Table 5**). Execution time was collected immediately after task completion for each approach. Cost and carbon emissions were retrieved from Azure once the monthly data was released.

Table 5. Primary metrics and associated measurements and considerations

Metric	Definition	Measurement	Measurement	Considerations
			Tool	
Cost	Reduction in	Cost = Usage	Azure Cost	Unit price varies due to
Efficiency	operational costs	Quantity	Management	negotiated pricing, demand,
	without	(standard) ×	+ Billing	location, etc. Actual costs
	compromising	Unit Price (non-		may be under NDAs, limiting
	performance.	standard).		transparency.
Time	Reduced	Execution time	Azure	Measured in
Efficiency	execution time	measured from	Monitor / Log	seconds/milliseconds;
	for data	task initiation	Analytics	variability introduced by
	processing tasks.	to completion.		cold starts, system
				overhead, and queue wait
				times, i.e., may not measure
				CPU runtime.

Environmental	Decrease in	Carbon	Azure Carbon	Carbon intensity depends on
Impact	carbon emissions	Emissions =	Optimization	grid mix, data center
	and energy	Energy	Tool	location, and regulations.
	consumption.	Consumption		Azure aggregates emissions
		(standard) ×		at the monthly and resource
		Carbon		group level, reducing
		Intensity (non-		granularity.
		standard).		
Write/Storage	Charges incurred	Based on the	Azure Cost	Rarely accessed data can
Cost	when data is	total volume of	Management	accumulate significant
	added /updated	data written	+ Billing	charges if not optimized.
	and/or stored in	and stored (in		
	the pipeline.	GB).		
Geo-	Movement of	Billing is per GB	Azure Cost	The volume and frequency
Replication v2	data between	of data	Management	of data changes, the
Data Transfer	geographically	replicated	+ Billing	distance between regions,
	distributed Azure	across regions.		and the chosen storage tier
	regions under the			have an impact on the
	Version 2 geo-			overall cost.
	replication			
	model.			

^{*}The hierarchy for Azure resources is as follows: Subscription > Resource Group > (Resource) Azure Synapse Analytics > Pipeline > Activity.

Outcome Metrics and Results

The Azure Functions (Serverless) approach delivered the best overall performance, recording the lowest cost (USD 0.01), lowest carbon emissions (0.00003 kg CO₂e), and shortest execution time (1.12 hours). This efficiency was attributed to serverless computing's ability to allocate resources dynamically, only when needed, avoiding idle costs. The Synapse Pipelines (No-Code) model performed moderately well, costing USD 1.68, emitting 0.01873 kg CO₂e, and taking 6.9 hours to complete. Its visual, managed environment simplified orchestration but added some latency due to additional backend processes like scheduling and logging.

In contrast, the Synapse Notebooks (Code-Based) approach was the least efficient, costing USD 15.20 and generating 0.16901 kg CO₂e, with a runtime of 5.74 hours. Most of these costs were driven by a dedicated Spark pool, which remained active even when idle. Additionally, geo-replication accounted for roughly 85% of storage costs, underscoring how data movement and redundancy can significantly affect budgets. Overall, these results confirm that serverless ingestion pipelines, when aligned with SCORE guidelines, offer the most sustainable and cost-effective approach for LMIC research operations.

Table 6. Performance Metrics for One-Time Data Ingestion and Storage and Data Transfer Costs

	Approach		
	Synapse Pipelines (No- Code)	Azure Functions (Serverless Code)	Synapse Notebooks (Code, Python)
Cost (USD)	1.68	0.01	15.20*
Carbon Emissions (kg CO₂e)	0.01873	0.00003	0.16901
Execution Time (hours)	6.90	1.12	5.74
Write/Storage Cost (USD)	1.56	1.75	1.55
Geo-Replication v2 Data Transfer (USD)	8.73	9.61	8.73

^{*}The cost for Synapse Notebooks includes \$0.01 for the Synapse Workspace and \$15.19 for the Dedicated Spark Pool.

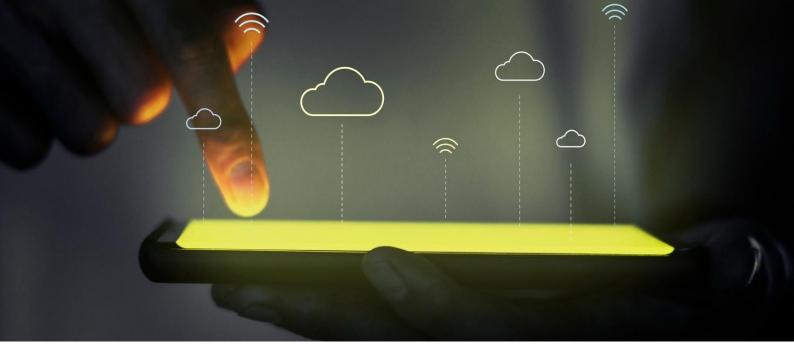
Discussion

The results of the SCORE proof of concept challenged common assumptions about the efficiency and sustainability of cloud-based data ingestion methods. The research team initially expected that code-based pipelines, such as Synapse Notebooks, would be the most cost-effective and environmentally sustainable due to their flexibility and potential for code-level optimization. However, the findings revealed the opposite: dedicated compute environments like Spark pools substantially increased both cost and carbon emissions, accounting for nearly all of the expenses in that approach.

This pattern mirrors ongoing research within LMIC research environments, where compute-intensive and security-heavy resources are often the largest contributors to both financial and environmental overheads. These insights highlight the importance of careful infrastructure planning and demonstrate that high-performance configurations are not always the most sustainable or affordable choices in resource-limited contexts. Conversely, serverless models, specifically Azure Functions, outperformed other configurations in every key metric: lowest cost (USD 0.01), lowest carbon emissions (0.00003 kg CO_2e), and shortest execution time (1.12 hours). Serverless architectures dynamically allocate computing power based on demand, eliminating idle resource costs and improving both economic and environmental efficiency.

Interestingly, storage costs remained fairly consistent across all methods, but geo-replication accounted for roughly 85% of those costs, emphasizing how easily overlooked pricing factors can inflate budgets. Teams frequently underestimate egress and replication fees, assuming these services are low-cost or included. The study's results reinforce the need for clearer understanding of cloud

provider pricing models and for transparent budgeting frameworks suited to LMIC research institutions. Overall, the results affirm SCORE's value as a context-aware guideline that enables researchers to make evidence-based infrastructure decisions, balancing performance, cost control, and environmental responsibility across diverse research environments.


Considerations and Future Directions

While the SCORE framework offers a structured, evidence-based approach for building sustainable cloud operations in LMIC research environments, several considerations must guide future refinement and broader implementation. The current validation was conducted exclusively on Microsoft Azure, meaning that results may vary across other major platforms such as AWS and Google Cloud Platform (GCP), where architecture, pricing, and sustainability tools differ. Expanding SCORE testing across multiple cloud providers will help confirm its generalizability and reveal platform-specific nuances that affect cost and emissions.

Additionally, the validation focused primarily on data ingestion workflows. To fully evaluate SCORE's versatility, further studies should include more complex pipeline stages, such as data transformation, analysis, and GPU-intensive machine learning workloads. Such tasks often behave differently under variable compute and storage conditions. Another limitation involves the granularity of emissions data. Azure's current tools aggregate carbon metrics monthly at the resource-group level, which makes it difficult to capture emissions from individual tasks in real time. Until finer-grained tracking becomes available, LMIC teams may need to rely on proxy metrics for environmental optimization.

Finally, successful SCORE adoption depends on capacity building. Many research teams in LMICs have limited cloud literacy, emphasizing the need for training programs, documentation, and community-based support systems to ensure practical implementation.

Conclusion

This paper introduces SCORE guidelines that aim to enable LMIC research teams to navigate the triple constraints of cost efficiency, technical feasibility, and environmental sustainability in cloud-based data pipelines. Through a structured three-step approach, Assessment, Selection, and Optimization, SCORE addresses critical gaps in existing cloud guidance by contextualizing, quantifying tradeoffs, prioritizing practicality, and advancing sustainability. Future work should expand SCORE's validation to multi-cloud environments, other LMICs deployments, and advanced pipeline stages (e.g., distributed ML training). Integration with open-source monitoring tools could further reduce dependency on proprietary solutions. By democratizing sustainable cloud practices, SCORE empowers LMICs researchers to leverage cloud infrastructure as an equitable, scalable, and ecologically conscious foundation for scientific advancement.

Achieving Sustainable Cloud Pipelines for Research Data

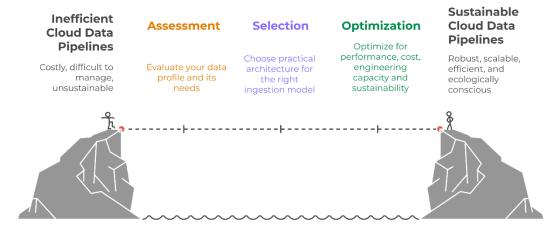


Figure 4: Bridging the Cloud Research Gap in LMICs

References

- 1. Kumar Pentyala D. Enhancing the Reliability of Data Pipelines in Cloud Infrastructures Through Al-Driven Solutions. Vol. 6, An International Peer Review Journal) VOIUME. 2020.
- 2. Allam H. Sustainable Cloud Engineering: Optimizing Resources for Green DevOps. International Journal of Artificial Intelligence, Data Science, and Machine Learning [Internet]. 2023;4:36–45. Available from: https://ijaidsml.org/index.php/ijaidsml/article/view/179
- 3. Franzen SRP, Chandler C, Lang T, Samuel D, Franzen RP. Health research capacity development in low and middle income countries: reality or rhetoric? A systematic meta-narrative review of the qualitative literature. BMJ Open [Internet]. 2017;7:12332. Available from: http://bmjopen.bmj.com/
- 4. Monserrate SG. The Staggering Ecological Impacts of Computation and the Cloud [Internet]. The Mit Press Reader. 2022 [cited 2025 Jul 10]. Available from: https://thereader.mitpress.mit.edu/the-staggering-ecological-impacts-of-computation-and-the-cloud/
- 5. Amazon Web Services. Sustainability Tools [Internet]. Amazon Web Services. 2025 [cited 2025 Jul 10]. Available from: https://aws.amazon.com/sustainability/tools/
- 6. Deochake S. Cloud Cost Optimization: A Comprehensive Review of Strategies and Case Studies. 2023 Jul 24; Available from: http://arxiv.org/abs/2307.12479
- 7. Fluence. 5 Case Studies of Cloud Egress Fee Reduction and Slashing Data Costs [Internet]. Fluence. 2025 [cited 2025 Jul 10]. Available from: https://www.fluence.network/blog/5-case-studies-of-cloud-egress-fee-reduction-and-slashing-data-costs/
- 8. Amazon Web Services. Cost Optimization Pillar AWS Well-Architected Framework. 2023;
- 9. Microsoft. Azure Reserved Virtual Machine Instances [Internet]. 2025 [cited 2025 Jul 10]. Available from: https://azure.microsoft.com/en-us/pricing/reserved-vm-instances/
- Pintaux N. Well-Architected Framework: Cost optimization pillar [Internet]. Google. 2024 [cited
 Jul 10]. Available from: https://cloud.google.com/architecture/framework/cost-optimization
- 11. Mazumdar S, Pranzo M. Power efficient server consolidation for Cloud data center. Future Generation Computer Systems. 2017 May;70:4–16.
- 12. Snyder P, Vastel A, Livshits B. Who Filters the Filters: Understanding the Growth, Usefulness and Efficiency of Crowdsourced Ad Blocking. Association for Computer Machinery [Internet]. 2020 Jun 12 [cited 2025 Jul 10]; Available from: https://dl.acm.org/doi/10.1145/3392144
- 13. Mahgoub A, Yi EB, Shankar K, Elnikety S, Chaterji S, Bagchi S. Orion and the Three Rights: Sizing, Bundling, and Prewarming for Serverless DAGs ORION and the Three Rights: Sizing, Bundling,

- and Prewarming for Serverless DAGs [Internet]. Available from: https://www.usenix.org/conference/osdi22/presentation/mahgoub
- 14. Yildirim E, Kosar T. End-to-End Data-Flow Parallelism for Throughput Optimization in High-Speed Networks. J Grid Comput. 2012 Sep 10;10(3):395–418.
- 15. Maltsev E, Muliarevych O. Beyond JSON: Evaluating Serialization Formats for Space-Efficient Communication. Advances in Cyber-Physical Systems. 2024 May 10;9(1):9–15.
- 16. Morschel L, Adeyemi O, Garonne V, Litvintsev D, Millar P, Mkrtchyan T, et al. Efficient Message Encoding For Inter-Service Communication in dCache: Evaluation of Existing Serialization Protocols as a Replacement for Java Object Serialization. EPJ Web Conf. 2020 Nov 16;245:05017.
- 17. Amazon Web Services. Auto Scaling for AWS Glue ETL and streaming jobs. AWS Glue Developer Guide [Internet]. [cited 2025 Aug 1]. Available from: https://docs.aws.amazon.com/glue/latest/dg/auto-scaling.html
- 18. Raza M, KS S, K S, Mohamad A. Carbon footprint reduction in cloud computing: Best practices and emerging trends. International Journal of Cloud Computing and Database Management. 2024 Jan 1;5(1):25–33.
- 19. Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers RM. ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases [Internet]. Available from: https://uts.nlm.nih.gov/metathesaurus.html

