The Centre for Innovation in Medical Education is the most advanced healthcare teaching and learning centre in Pakistan - and comparable to the best in the world. We are the first simulation-based educational institute in South Asia to be accredited by the Society for Simulation in Healthcare, SSH. Supporting student-centred, problem and team-based learning, CIME is transforming the pedagogy of medical education through its technologically enhanced clinical simulation that harness the power of virtual reality and e-Learning. By promoting innovation and research, as well as bridging traditional boundaries between professions, the Centre fulfils the Chancellor, His Highness the Aga Khan’s strategic vision of AKU serving as an unparalleled resource for the betterment of healthcare in the nation.
THE AGA KHAN UNIVERSITY

Our Vision
Aga Khan University is an autonomous, international institution of distinction, primarily serving the developing world and Muslim societies in innovative and enduring ways.

Our Mission
Aga Khan University is committed to the development of human capacities through the discovery and dissemination of knowledge, and application through service. It seeks to prepare individuals for constructive and exemplary leadership roles, and shaping public and private policies, through strength in research and excellence in education, all dedicated to providing meaningful contributions to society. To advance this Mission, AKU will:
• Offer programmes of international quality;
• Respond to identified needs in the countries and regions which it serves;
• Prioritise teaching and research which will inform and underpin intellectual innovation and change;
• Provide service to advance its educational and research mandate;
• Foster and develop leadership capacity through its education and research programmes;
• Assess its impact and effectiveness;
• Promote access and equity by taking positive measures to make the University inclusive of all socio-economic groups, addressing the particular needs and circumstances of the disadvantaged; promoting the welfare and advancement of women;
• Engage in knowledge networking and emerging technologies.
• Add value by promoting partnership and networking across the Aga Khan Development Network (AKDN), and with other national and international institutions.

Values
As an international institution, in achieving its Mission, Aga Khan University operates on the core principles of quality, relevance, impact and access. Inspired by Islamic ethics, humanistic ideals and the philosophy of Aga Khan Development Network (AKDN), the University is committed to building an environment that fosters intellectual freedom, distinction in scholarship, pluralism, compassion, and humanity’s collective responsibility for a sustainable physical, social and cultural environment.
The Centre for Innovation in Medical Education (CIME) on the Aga Khan University campus in Karachi is a $15 million, donor funded complex comprising three buildings - the Maryam Bashir Dawood Building, the Ibn Sina Building and the Shiraz Boghani Building. The buildings were named by the three donors (one non-Ismaili and two Ismaili) who each gifted $5M for the project. The Chancellor met these donors in 2013 at AKU when the foundation ceremony plaque was unveiled.

The buildings, completed and commissioned in November 2015, are located adjacent to the AKU School of Nursing and Midwifery and cover an area of over 80,000 square feet. The Centre is the most advanced medical teaching and learning centre in Pakistan as well as the region, and comparable to the best in the world.

We are the first simulation-based educational institute in South Asia to be accredited by the Society for Simulation in Healthcare, SSH.

CIME is a state-of-the-art, multi-purpose, multi-disciplinary and multi-professional facility for the training of health professionals (medicine, nursing, dentistry and allied health) across the continuum of undergraduate to postgraduate students to practitioners and specialists. Spread over three floors, the Centre offers multi-purpose teaching spaces, different high-fidelity manikins, state-of-the-art surgical training simulators, a Phantom Head dental hygiene lab, and eHealth clinics (telemedicine). CIME aims to transform clinical education and training, promote innovation and research, bridge boundaries between professions, and highlight ethical questions and safeguard patient safety. It is envisioned to be a resource for the nation and the region.

Learning from other such centres around the world, CIME supports a problem-based learning environment and enables improvement in teaching and learning as well as provides new ways for assessment and evaluation of clinical skills. It allows students and professionals from all medical disciplines to collaborate leading to a highly enhanced team-based learning experience. This should translate into an enhanced patient experience. The use of the latest technology in simulation equipment and techniques also makes for a safer and more effective learning environment.

The Centre, now operational for two years, is led by an expert recruited from Scotland, Prof. Charles Docherty to set up courses for teaching with technology, especially simulators that allow the students to develop their bedside protocols and treatment skills before working on patients. This promotes patient safety and allows, for example, surgeons to hone their skills through practice. This is similar to an aircraft simulator on which pilots are trained and continue to practise when not flying.

The Centre has already offered many teaching/training sessions and workshops with the activity growing exponentially each year. In the last full year, there were over 160 simulation based sessions provided to nursing students, 81 simulation based training sessions for AKUH residents and 10 workshops, which included external participants. Further, over 150 Continuing Professional Development (CPD) and Continuing Medical Education (CME) courses were offered, including 75 sessions for external participants.

Changes and additions to the University’s programs are facilitated by the Centre as curricula of the College of Medicine and the School of Nursing and Midwifery are being revised to take advantage of teaching with technology. Continuous improvement and innovation are central to the CIME, and AKU as a whole, and at the CIME much of this is being achieved with the help of TKN volunteers along with international academic and hospital partners.
CLINICAL SIMULATION EDUCATORS PROGRAMME

Programme Rationale

Clinical simulation has become a necessity in modern healthcare curricula. With this requirement comes the cognitive overhead of understanding the process and knowing how to adapt existing curricula to ease integration, and how to create the learning environments that allow the process of simulation to achieve its goals. Effective practice is informed by underlying theoretical models. While unequivocal scientific findings on the effectiveness of clinical simulation do not yet exist, exemplars and successful case studies abound. In this context the Aga Khan University Karachi has made a sizable investment in simulation through its Centre for Innovation in Medical Education (CIME) with a commitment to improving the quality of teaching and learning in undergraduate and post-graduate programmes. Moreover, CIME is envisioned as a national resource for Pakistan with the potential to achieve across the board improvements to health sciences education, and thus better healthcare for its citizens. This programme while based in CIME will be open to all. It will demonstrate the full potential of cutting edge simulation facilities, technology and teaching methods. This program should be seen as an investment in the skills and knowledge of the educators of health science professionals, designed to complement capital investment in modern teaching facilities. Better awareness and understanding of the theories and models that underpin the process of simulation can enhance reflection by educators and practitioners, assisting the process of continuing improvement. In addition to theory informing practice, practice feeds into the understanding and internalization of theory. This course combines theory and practice in the art and science of simulation education and is thus designed for practicing healthcare professionals who may wish to extend their teaching skills to using simulation, and for university faculty who may wish to design and teach practice focused courses using simulation techniques.

Aims

The aims of this program are to:
1. Equip participants with the underpinning theoretical knowledge with which to analyse and critically appraise differing approaches to simulation education in healthcare, allowing sound instructional design and pedagogy to be incorporated into planned simulation activities.
2. Provide participants with a grounding in the fundamentals of different simulation modalities facilitating rational decision making in the choice of approach for differing simulation contexts.
3. Facilitate the development of cultural sensitivity, ethical reasoning and sound judgment in participants and promote the psychological and physical safety of learners engaged in clinical simulation.
4. Provide participants with a means of developing and refining their teaching skills.

MOODLE

This Programme uses the Virtual Learning Environment (VLE) of Moodle. This website is easy to use – just like Facebook for example – and participants will be registered using either AKU details or in the case of externals, using the email address provided. This will happen in the week prior to commencement of the programme. Participants will automatically be assigned a group, for the purposes of on-line discussion with one another and with faculty on any issue academic or organisational that may
arise during the programme. Faculty may initiate this discussion with a question. Information on this will be provided on the first day. It is there for your benefit and can be accessed 24-7. It is important to familiarise yourself with the Moodle website as it will allow you to have access to all the learning resources such as youtube videos, CIME videos, powerpoint presentations and some of the documents that we use here in CIME.

Programme Director:

Professor Charles Docherty
Director - CIME

Professor Docherty a nurse by profession, has developed his expertise in clinical simulation over the past twenty years, initially by designing simulation laboratories and curricula in Glasgow, Scotland, then increasingly providing consultancy internationally. Of note he was Director of Clinical Simulation at the Royal College of Surgeons in Ireland (Bahrain) before becoming the Head of the School of Nursing in RCSI Bahrain, taking a similar position in the University of Sharjah before joining AKU in November 2016. He has recently been awarded the Robert Buchanan Endowed Chair in Teaching with Technology from the Aga Khan University.

Programme Coordinators:

Dr Maria Fatima Ali
Simulation Education Analyst - CIME

Dr Maria holds a bachelor’s degree in Dentistry from Jinnah Medical and Dental College. Currently, she is pursuing an M.Phil. Degree in Clinical Microbiology and Immunology from Dadabhoy Institute of Higher Education (DIHE). She had previously been working as a Research Associate in the field of Regenerative Medicine, along with which she also holds nearly two years of teaching experience. She joined CIME in June 2018 as a Teaching Associate, where she assists in the generation, organisation and implementation of courses, programmes, workshops and simulation activities.

Dr Mehak Rajani
Simulation Education Analyst - CIME

Dr Mehak is an MBBS graduate from Dow Medical College. Her journey in AKUH started with house job in 2016 and then she joined CIME as a Teaching Associate in 2018. She has a remarkable academic profile including research electives at The Aga Khan University and Neuro-medicine electives from The University of Toronto, Canada. She has published in international journals and recently represented CIME at international level in SIMGHOSTS Conference. She specializes in design, development, documentation and execution of simulation-based courses. She aspires to improve patient safety and efficiency in patient care through promoting simulation-based clinical training in developing countries.
Programme Faculty:

Dr Faisal Ismail
Associate Professor - Section of Gastroenterology, Department of Medicine

Dr Faisal Ismail is an Associate Professor and Consultant Gastroenterologist in the section of Gastroenterology. He has previously served as the GI residency program director for 3 years and is extensively involved in under and post-graduate training. His interest is interventional endoscopy and integrating simulation into the curricula of GI training in the country. He has completed the Comprehensive course on Simulation From Boston, USA, he is also a Fellow in simulation of Higher Education Academy (HEA).

Dr Azam Afzal
Senior Instructor - Department for Educational Development

Dr Azam Afzal is a senior instructor and a joint faculty of the Department of Educational Development and Department of Medicine at Aga Khan University. He is involved in integrating simulation-based education in the Medicine UG and PG curricula. His interest in simulation focuses on Standardized Patients and Moulage, and outcome measurement on simulation.

Dr Amir H. Shariff
Assistant Professor - Department of Surgery

Dr Amir H. Shariff is an Assistant Professor of Surgery and a Consultant General Surgeon. He completed his General Surgery residency and a fellowship in Advanced Laparoscopic and Bariatric Surgery from Yale University, USA. He focuses on minimally invasive solutions to general surgical problems. He is the co-ordinator of the General Surgery residency program with a special interest in surgical simulation. He has completed the Comprehensive course on Simulation From Boston, USA.

Dr Aamir Hameed Khan
Professor - Section of Cardiology, Department of Medicine

Dr Aamir Hameed Khan is a Professor of Medicine and Consultant Cardiac Electrophysiologist. He was formerly the Director of the cardiology residency program. He is a member of CIME committee Integration of Simulation into UG and PG Curricula. He is also Co-chief of Service Line 1 (Heart Lungs and Vascular). His research interests are syncope, SVT, CEIDs and hypertension. He is currently the chair of the guidelines committee of the Pakistan Hypertension League. He has completed the Comprehensive course on Simulation From Boston, USA.

Mr Sarmad M. Soomar
Simulation Education Analyst - CIME

Mr Sarmad studied nursing at The Aga Khan University, Pakistan and is currently a Fellow of Sexual and Reproductive Health & Rights at Rise Up by Public Health Institute of California. His work and research experiences are related to nursing care, reproductive health, mental health and education. He has completed a clinical practicum at the Neonatal Intensive Care Unit of Aga Khan University Hospital Karachi and recently he became the recipient of 120 under 40 next generation leader award by Johns Hopkins Bloomberg School of Public Health.
Dr Aliya Ahmed
Professor - Department of Anaesthesiology

Dr Aliya Ahmed is a Professor of Anaesthesiology at Aga Khan University. She is the Director Education Cell, Department of Anaesthesiology. She is also a member of CIME sub-committee for Leadership Development and the Committee for Integration of simulation in UG and PG Curricula. Her research interests are Acute Pain Management, Anaesthesia and Medical Education. She has completed the Comprehensive course on Simulation From Boston, USA.

Dr Swaleha Tariq Bhombal
Assistant Professor - Department of Family Medicine

Dr Swaleha Tariq Bhombal is a Family Physician and Assistant Professor in the Department of Family Medicine. She is the Director of the Family Medicine Residency Programme. She is also a member of integration of simulation in UGME and PGME curricula. She is currently doing Masters in Health Profession Education.

Dr Naila Nadeem
Associate Professor - Department of Radiology

Dr Naila Nadeem is Associate Professor at Department of Radiology. She is Chair of Expansion of Simulation Based CME Committee and also Secretary of CIME Equipment Committee. She is the coordinator of year three AKU undergraduate Program. She has many research publications to her credits in the field of Pediatric Radiology and Medical Education. She has completed the Comprehensive course on Simulation From Boston, USA.

Dr Sana Saeed
Assistant Professor, Department of Paediatrics and Department of Education

Dr Sana Saeed is a Consultant Paediatrician and Assistant Professor at The Aga Khan University. She is working as the Educational Coordinator for UGME and PGME programme in Paediatrics. She is also a member of CIME subcommittee for Leadership Development in Simulation.

Ms Shirin Rahim, Senior Instructor - School of Nursing and Midwifery

Ms Shirin Rahim is a senior instructor at Aga Khan University School of Nursing and Midwifery and currently serving as Academic Lead for BScN year 3 and 4. She is actively involved in integrating simulation-based education in undergraduate nursing curricula. She has worked around facilitating SONAM teams in developing simulation-based education in the domains of Adult Health Nursing, Critical Care Nursing, Mental Health Nursing, Child Health Nursing and for Trainee Nurse Interns.

Dr Shazia Babar Matin

Dr Shazia Babar is a senior instructor and a joint faculty of the Department of Educational Development and Department of Obstetrics and Gynaecology at Aga Khan University. She holds a Masters in Health Professions Education from DOW University of Health Sciences, Karachi. She completed her MBBS from Sindh Medical College, University of Karachi.
Technical Support:

Mr Burhan Ali, Simulation Analyst - Administration, CIME

Mr Burhan holds a Masters degree in Human Resource Management from Dadabhoy Institute of Higher Education (DIHE). Reporting to the Administration Advisor Simulation, he is responsible for Budgeting & Costing, Report Writing & Data Management of the Centre. He is extensively involved in planning & organizing CME activities at the centre.

Mr Talha Ahmed Khan, Simulation Analyst - Technical, CIME

Mr Talha holds a Bachelor degree in Computer Engineering from Sir Syed University of Engineering and Technology and is currently pursuing a Masters degree in Bioinformatics from Muhammad Ali Jinnah University. He provides technical support in simulation-based courses and workshops. He has been associated with the university since 2017.

Mr Saleem Pirani, BioMedical Specialist, CIME

Mr Pirani is serving CIME in his role of technical specialists to support and maintain high and medium fidelity simulators. He holds an Hons Degree in Electronics Technology with several IT certifications and number of international certified technical trainings on medical imaging equipment, patient care and surgical simulators.

Mr Darab Nisar Ahmed, Simulation Analyst - Technical, CIME

Mr Darab has completed a Bachelor degree in Commerce from University of Karachi and is currently pursuing a Bachelor of Sciences in Software Engineering degree from ILMA University. He provides technical support in educational activities at the centre. He has been associated with the university since 2015.

Mr Jalal Uddin, Simulation Analyst - Technical, CIME

Mr Jalal is a Biomedical and Healthcare Simulation Engineer. He holds a Bachelor of Science degree in biomedical engineering from Sir Syed University of Engineering and Technology. He provides technical support in simulation-based activities and is responsible for the maintenance of simulators and biomedical equipment. He has been associated with AKU since 2015.

Mr Numair Shahpur, Technical Advisor, CIME

Mr Numair holds a Bachelor degree in Electronics Engineering from PAF Karachi Institute of Economics and Technology. He has a diverse experience in IT infrastructure and has been associated with the university since 2011. His prime responsibility at the centre is to ensure smooth operations of IT and AV technologies.

Mr Naveed Muhammad, Simulation Analyst - Technical, CIME

Mr Naveed holds a Bachelor degree in Electronic Engineering from Sir Syed University of Engineering and Technology. He provides technical support to CIME and is responsible for ensuring that the technology is up to date and working reliably. He has over five years of experience working in Home Automation. He has a keen interest in exploring new technologies.
MODULE 1: SIMULATION MODALITIES AND THEIR APPLICATION

This session introduces terminology that describes and distinguishes between different approaches to simulation based education, focusing on their defining characteristics. The philosophical roots underpinning these approaches are referred to, and commonalities with other liberal educational approaches made explicit.

Content:
- Definitions and types of simulation modalities in healthcare education: the ‘simulation dictionary’
- Applied Educational Theory and Pedagogies appropriate to simulation.
- Factors that make one learning outcome more suited to simulation than another.
- The Instructional Design of simulation activities.
- Fidelity and relevance of learning environments related to the outcomes of clinical simulation.
- The ‘Briefing – Facilitation – Debriefing’ model: an overview
- The use of technologies to facilitate learning through simulation.
- The reflective practitioner - models to facilitate reflection on practice.

Outcomes:
1. Analyse simulation modalities from different pedagogical perspectives.
2. Critically evaluate the components of learning environments optimized for simulation.
3. Outline the main components of the simulation process and their pedagogical underpinnings.
4. Explore the relationship between reflection on simulated practice and reflection on actual practice.
5. Review the approaches to teaching and learning in Simulation Based Education, and compare with Problem Based Learning and traditional teaching methods.

MODULE 2 & 3: TEACHING THROUGH SIMULATION

This module introduces programme participants to theories of simulation and clinical skills acquisition, as they are applied in practice. Active demonstrations of classical simulation and skills training are given. The needs of faculty engaged in such teaching, planning and resourcing are considered alongside educational requirements and the need to have students psychologically prepared to maximize their engagement.

Content:
- Practical aspects of learning through simulation: roles and responsibilities of student; teacher; simulated patient; technician.
- Promoting suspension of disbelief, psychological fidelity and transfer of learning.
- Role modelling and peer support; strategies to challenge and support students undertaking simulated activities.
- The management of learner anxiety in the learning process.
- Preparedness for learning: methods and approaches to participant briefing; inducing self-awareness and the acknowledgement of existing skills and knowledge; scaffolding.

Outcomes:
1. Outline the educational requirements of differing approaches to simulation.
2. Discuss ways in which faculty, equipment, environment and support staff can be sufficiently prepared for all aspects of conducting simulation and task training.
3. Provide appropriate psychological support and preparation for participants in simulation.
4. Analyse different approaches to briefing, appraising the merits of each.

MODULE 4 & 5: COURSE DESIGN AND SCENARIO DEVELOPMENT

Fundamental relationships between curricula, programmes, courses, modules and timetable are explored. The concepts of ‘units of learning’ and ‘credit’ are discussed. This understanding is a prerequisite to exploring ways in which Simulation Based Education can be represented in curricula. The role of conceptual frameworks in the instructional
design of simulated learning experiences, providing guidance for teachers and learners and a clear focus on the achievement of learning, is analysed. Human elements of simulation are explored. Theory is interspersed with practice to inform scenario writing, development, and piloting.

Content:

- The principles of course writing: relationship between course, programme, curricula, and selection of learning outcomes/objectives achievable through simulation.
- Incorporating EBP and Institutional requirements (governance, policies, and procedures) into simulation courses.
- Taxonomies of learning: Bloom's; and Steinaker & Bell's experiential taxonomy.
- Writing learning outcomes and behavioural objectives.
- Identifying curricular learning outcomes/objectives that can be achieved through simulation and those that cannot.
- Quality measurement in simulation education: standards.
- Scenarios as templates, stereotyping, social-psychology concepts of ‘Scripts’ and ‘Heuristics’, and ‘Attribution theory’
- Obtaining scenarios from the real world: characteristics of relevant/important scenarios.
- Simple and complex scenarios: planning for variability in student response.
- Scenario analysis during briefing: student-centred approaches and role induction.
- Principles of scenario development in dynamic simulations and mannequin programming.
- Continuous quality improvement in scenario utilisation through evaluation and review.

Outcomes:

1. Explain the principles and process of educational course writing.
2. Explain the purpose of clearly stating learning objectives/outcomes.
3. Critically appraise factors that determine whether learning outcomes can be achieved through simulation.
4. Outline factors that determine quality in simulation education.
5. Discuss the merits of developing scenarios for use in clinical simulation.
6. Critique scenarios for ease of use and appropriateness to clinical simulation contexts.

**MODULE 6: DEBRIEFING AND PROVIDING FEEDBACK**

Skilled debriefing is essential to help learners’ reflect on their experiences within a simulation scenario, and draw learning benefits from them. The skills of faculty are developed through experiential learning; guidance on how to maintain psychological safety for students is given through worked examples. The use of technologies to assist self-evaluation and peer evaluation is explored. Principles of giving feedback to learners on their progress towards competence in clinical skills performance are evaluated.

Content:

- Assessment of Performance and the measurement of competence.
- Models of Debriefing: the debriefing process.
- Models of reflection.
- Principles of self-assessment, peer review, constructive criticism and being non-judgmental.
- Tools to assist in providing structured feedback: the value of checklists and criterion-referenced grids.
- Using technology to assist the debriefing process: video stimulated recall.
- Conduct a simulated communication exercise and provide debriefing.

Outcomes:

1. Prepare and conduct a clinical simulation debriefing.
2. Outline the benefits and drawbacks of using video recording in the assessment of performance and the provision of feedback.
3. Compare and contrast methods of giving feedback on skills acquisition, and giving feedback on overall performance in a simulation.
MODULE 7: SIMULATION IN ACTION

This provides the experience of using a high fidelity mannequin within a clinical scenario. Programming the mannequin and testing on others is an essential component of learning, as is the experience of performing within a simulation that others have designed. The whole process of planning, briefing, facilitation and debriefing is enacted and reflected upon.

Content:

• Introduction to High-Fidelity Mannequin.
• Group work: Plan and Design scenario(s) using a selected template, test in a ‘live’ situation; evaluate performances and debrief participants. Critique group and individual performances.

Outcomes:

1. Plan and conduct a simulation scenario.
2. Conduct a debriefing session.
3. Analyse the participant experience of a simulation scenario.

Experience the capability of simulation as a means of producing higher order cognitive skills such as critical thinking, decision making and clinical judgment.

MODULE 8: MOCK OSCE

The use of the OSCE as a means of determining competence is explored from validity and reliability perspectives, and as a means of doing so, students will experience an OSCE focusing on the skills they have acquired in this programme.

Content:

• OSCE organization, preparation and practice.

Outcomes:

1. Experience how the OSCE is an appropriate method of assessing the development of skills acquired in simulation.

MODULE 9: MEASURING THE OUTCOMES OF SIMULATION

The challenges of measuring the effectiveness of any educational process or intervention are explored with specific focus on clinical simulation. How to measure ‘impact’ is discussed.

Content:

• Measuring the achievement of Learning Outcomes in simulation.
• Assessing the transfer of learning and the impact on practice.
• Impact on the practitioner - life - long learner; self-efficacy; confidence, competence.
• Quality indicators.
• Module/programme evaluations as audit or research data.

Outcomes:

1. Understand the benefits of focusing teaching activities on the achievement of learning outcomes in simulation.
2. Analyse how simulation education may achieve outcomes beyond those originally stated.
3. Analyse the extent to which evaluation data may be useful as research or audit data.

MODULE 10: CULTURAL COMPETENCE & THE ETHICAL DIMENSIONS OF CLINICAL SIMULATION

Scenarios and learning materials are analysed and adjusted to incorporate cultural concepts to enhance their relevance. The importance of ‘inclusiveness’ and how to deal with bias, discrimination, and negative stereotyping are discussed. Exercises are designed to raise awareness of the ethical challenges that may arise in Simulation Based Education.
Content:
- How to create scenarios, case studies and vignettes that demonstrate a range of religious, ethnic and cultural backgrounds.
- Encapsulating the principles of beneficence, non-maleficence, justice and autonomy within the practice of simulation education.
- Students as subjects; video ownership and individual rights.
- Psychological safety and Fundamental Attribution Error.
- Patterns of behavior, stereotyping, logical assumptions: positive and negative consequences.
- Simulated patients and consequences for their mental health and wellbeing.
- The death of a simulator.
- Resource utilization for simulation in the context of rationing of care resources.

Outcomes:
1. Understand the importance of acknowledging diversity and multicultural contexts within simulated environments.
2. Explain how ethical principles are respected within clinical simulation education.
CIME is the most advanced healthcare teaching and learning centre in Pakistan - and comparable to the best in the world. Supporting student-centred, problem and team-based learning, CIME is transforming the pedagogy of medical education through technology enhanced clinical simulation and learning. By promoting innovation and research, as well as bridging traditional boundaries between professions, the Centre fulfils the strategic vision of the Aga Khan University serving as an unparalleled resource for the betterment of healthcare in the nation.

Educational Programmes

Clinical Simulation Educators Programme

This Programme equips participants with the skills, knowledge and practical experience to enable informed choices to be made regarding where, how, and when clinical simulation is applicable. It is designed for faculty and clinicians who wish their teaching skills to be current, credible and at the cutting edge.

Conference for Clinical Simulation Strategic Planners

This Programme is designed for those strategic decision makers within education and healthcare organisations contemplating introducing clinical simulation as a means of promoting student learning, patient safety and minimizing medical error.

Clinical Simulation Operators Programme

This Programme is designed for technical and operational employees of organisations introducing clinical simulation and associated technologies into teaching and learning. Content includes scenario design, hands-on practice, troubleshooting, and critique of equipment currently on the market.

Educational Programmes Calendar 2020

<table>
<thead>
<tr>
<th>Programme</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conference for Clinical Simulation Strategic Planners</td>
<td>December 3-4</td>
</tr>
<tr>
<td>Clinical Simulation Operators Programme</td>
<td>April 1-3 &amp; August 10-12</td>
</tr>
<tr>
<td>Clinical Simulation Educators Programme</td>
<td>March 2-6, June 8-12, September 7-11 &amp; December 7-11</td>
</tr>
</tbody>
</table>