Part I (Grade XI)

	Т	Copics and Sub-Topics		Student Learning Outcomes	Cog	nitive le	vels ¹
		topics and Sub-Topics		Student Learning Outcomes	K	U	Α
1.	Meas	urement	Student	s should be able to:			
	1.1	Scope of Physics	1.1.1	describe the importance of physics in space technology, nano-technology, aero-dynamics, medical physics, thermodynamics and solid state physics;		*	
	1.2	International System (SI) Units	1.2.1 1.2.2 1.2.3	 define the following: a. SI base units, b. derived units, c. supplementary units; identify the components of SLO 1.2.1 (a, b and c) for the various measurements; show the derived units as products or quotients of the base units; 	*	*	*
	1.3	Errors and Uncertainty	1.3.1 1.3.2	differentiate between systematic and random errors; solve word problems related to the uncertainty in the derived quantity;		*	*
	1.4	Precision and Accuracy	1.4.1 1.4.2	define precision and accuracy; differentiate between precision and accuracy;	*	*	
	1.5	Significant Figures	1.5.1 1.5.2	solve word problems using scientific notations and with correct number of significant figures; recognise that the least count (LC) of an instrument is the smallest measurable value of that instrument;		*	*

 $^{^{1}}$ K = Knowledge, U = Understanding, A = Application and other higher-order cognitive skills

Topics	Student Learning Outcomes	Cognitive levelsKUA
1.6 Dimensions	Students should be able to: 1.6.1 describe the concept of dimensions using mass, length a	and *
	time;1.6.2 show the homogeneity of physical equations by using	*
	dimensions and basic units;1.6.3 derive formula for physical quantities by using dimensional dime	ons. *

		Topies		Student Learning Outcomes	Cog	gnitive le	evels
		Topics		Student Learning Outcomes	K	U	Α
2.	Vecto	ors and Equilibrium	Student	s should be able to:			
	2.1	Cartesian Coordinate System	2.1.1	describe the Cartesian coordinate system in two and three dimension systems;		*	
	2.2	Addition of Vectors by Head to Tail Rule	2.2.1 2.2.2 2.2.3	explain the sum of vectors using head to tail rule; define resultant, negative, unit, null, position and equal vectors; analyse a vector into its rectangular components;	*	*	*
	2.3	Addition of Vectors by Rectangular Component Method	2.3.1	explain the sum of vectors using perpendicular components;		*	
	2.4	Scalar Product of Two Vectors	2.4.1 2.4.2 2.4.3	define scalar product of two vectors; exemplify the scalar product of two vectors in terms of angle between them; describe properties of scalar product of two vectors;	*	*	
	2.5	Vector Product of Two Vectors	2.5.1 2.5.2 2.5.3	define vector product of two vectors; exemplify vector product of two vectors in terms of angle between them; describe properties of vector product;	*	*	
	2.6	Torque	2.6.1 2.6.2	describe torque as a vector product of $\vec{r} \times \vec{F}$; discuss applications of torque;		*	
	2.7	Equilibrium of Forces	2.7.1 2.7.2	define equilibrium and its types; describe first and second conditions of equilibrium with the help of examples from daily life.	*	*	

		Topics and Sub-topics		Student Learning Outcomes	Cog	nitive le	evels
		Topics and Sub-topics		Student Learning Outcomes	K	U	Α
3.	Moti	on and Force	Student	ts should be able to:			
	3.1	Displacement	3.1.1	define displacement;	*		
	3.2	Velocity	3.2.1	define velocity, average velocity and instantaneous velocity;	*		
			3.2.2	define acceleration, average acceleration and instantaneous acceleration;	*		
			3.2.3 3.2.4	interpret velocity-time graph for constant direction; calculate area under velocity-time graph;			* *
			3.2.5	analyse the significance of area under velocity-time graph;			*
	3.3	Acceleration	3.3.1	explain the equations of motiona. for uniformly accelerated bodies in a straight line,b. in uniform gravitational field in a non-resistive medium;		*	
	3.4	Laws of Motion	3.4.1	describe Newton's laws of motion;		*	
	3.5	Force, Momentum and Impulse	3.5.1	relate the rate of change of momentum with Newton's 2 nd law of motion;		*	
			3.5.2	infer impulse as product of impulsive force and time;			*
			3.5.3	describe law of conservation of momentum;		*	
			3.5.4	apply law of conservation of momentum and study the special			*
				cases of elastic collision between two bodies in one dimension;			
			3.5.5	describe the force produced due to flow of water;		*	
			3.5.6	apply the law of conservation of momentum to study explosive forces;			*
			3.5.7	explain interaction of forces during rocket propulsion;		*	

Topics and Sub-topics	Student Learning Outcomes	Cog	nitive le	evels
Topics and Sub-topics	 6.1 define the following: a. projectile, b. projectile motion, c. trajectory of projectile; 6.2 describe projectile motion in non-resistive medium; 6.3 derive the relation for a. time of flight, b. maximum height, c. horizontal range of a projectile; 	K	U	Α
	Students should be able to:			
3.6 Projectile	 a. projectile, b. projectile motion, c. trajectory of projectile; 3.6.2 describe projectile motion in non-resistive medium; 3.6.3 derive the relation for a. time of flight, b. maximum height, c. horizontal range of a projectile; 	*	*	*

	r	Горісs and Sub-topics		Student Learning Outcomes	Cog	nitive le	vels
		topics and Sub-topics		Student Learning Outcomes	K	U	Α
4.	Work	, Power and Energy	Student	ts should be able to:			
	4.1	Work	4.1.1 4.1.2	define work as the cross-product of force and displacement; describe work when force and displacement are acting at an angle (θ);	*	*	
			4.1.3 4.1.4	list different units of work done; distinguish between positive, negative and zero work done with examples;	*	*	
			4.1.5	describe work done by variable and constant forces;		*	
	4.2	Work Done in a Gravitational Field	4.2.1	explain the work done in a gravitational field;		*	
	4.3	Power	4.3.1 4.3.2 4.3.3	define power as the rate of doing work; list different units of power; derive the formula of power in terms of force and velocity and use it in solving word problems;	* *		*
	4.4	Energy	4.4.1 4.4.2 4.4.3	define energy; list different units of energy; differentiate between potential and kinetic energy;	* *	*	
	4.5	Work-Energy Relation	4.5.1	deduce the relationship between energy and worka. when friction is present,b. when friction is not present;			*
	4.6	Absolute Gravitational Energy	4.6.1 4.6.2	analyse the absolute gravitational energy; derive an expression for absolute potential energy (PE);			*

Topics and Sub-topics	Student Learning Outcomes	Cogi K	nitive le U	evels
	Students should be able to:			
4.7 Escape Velocity	 4.7.1 describe the concept of escape velocity; 4.7.2 derive the formula for escape velocity; 4.7.3 calculate escape velocity for the Moon and the Earth when mass and radius of the bodies are given and use this formula for solving word problems; 		*	* *
4.8 Conservation of Energy	 4.8.1 explain the law of conservation of energy; 4.8.2 derive potential energy and kinetic energy in a resistive medium; 		*	*
4.9 Types of Energy Sources	 4.9.1 list the types of conventional and non-conventional energy sources; 4.9.2 describe the uses of energy in different fields. 	*	*	

		Tonics and Sub tonics			Cognitive levels		
		Topics and Sub-topics		Student Learning Outcomes	K	U	Α
5.	Circu	ular Motion	Studen	ts should be able to:			
	5.1	Angular Motion	5.1.1 5.1.2	define angular displacement, angular velocity and angular acceleration; discuss the relation between linear and angular displacement, velocity and acceleration;	*	*	
	5.2	Centripetal Force and Centripetal Acceleration	5.2.1 5.2.2 5.2.3	define centripetal force and centripetal acceleration; derive centripetal acceleration when speed is uniform; relate centripetal acceleration with angular velocity;	*	*	*
	5.3	Moment of Inertia	5.3.1	define moment of inertia and state its SI unit with dimension;	*		
	5.4	Angular Momentum	5.4.1 5.4.2	define angular momentum and state its SI unit with dimension; explain the law of conservation of angular momentum;	*	*	
	5.5	Rotational Kinetic Energy	5.5.1 5.5.2	define rotational kinetic energy; derive an expression for rotational kinetic energy and use this expression for solving word problems;	*		*
	5.6	Artificial Satellites and Weightlessness	5.6.1 5.6.2 5.6.3 5.6.4 5.6.5 5.6.6	describe reasons for weightlessness in artificial satellites; relate free fall motion with orbital motion of satellites; classify different types of satellites; define geostationary orbits; derive an expression for geostationary altitudes and solve problems based on this expression; explain how artificial gravity can be produced when a satellite revolves around the Earth;	*	* * *	*
	5.7	Orbital Velocity	5.7.1 5.7.2	define orbital velocity; derive a relation for orbital velocity and use this relation for solving word problems.	*		*

	,	Topics and Sub-topics		Student Learning Outcomes	Cog	nitive le	evels
		Topics and Sub-topics		Student Learning Outcomes	K	U	Α
6.	Fluid	Dynamics	Studen	ts should be able to:			
	6.1	Streamline and Turbulent Flow	6.1.1	define the following terms:a. streamline flow,b. turbulent flow;	*		
			6.1.2	state the conditions required for turbulent flow;	*		
	6.2	Equation of Continuity	6.2.1 6.2.2	derive the equation of continuity; describe the motion of a rocket using the equation of continuity;		*	*
			6.2.3	solve word problems related to the equation of continuity;			*
	6.3	Bernoulli's Equation	6.3.1 6.3.2	derive Bernoulli's equation; apply Bernoulli effect in the flow of air over an aerofoil, venturi meter and atomizers;			* *
			6.3.3	solve word problems using Bernoulli's equation;			*
	6.4	Viscous Fluids and Fluid Friction	6.4.1	define the following terms:a. viscous fluids,b. non-viscous fluids;	*		
			6.4.2	describe that viscous force in a fluid causes a retarding force on an object moving through it;		*	
			6.4.3	define fluid friction;	*		

Topics and Sub-topics	Student Learning Outcomes	Cog K	nitive le U	evels A
	Students should be able to:			
6.5 Fluid Friction and Terminal Velocity	 6.5.1 define terminal velocity; 6.5.2 describe the factors on which terminal velocity depends; 6.5.3 state Stoke's law; 6.5.4 derive an expression for terminal velocity of spherical body falling through viscous fluids by using Stoke's law; 6.5.5 apply dimensional analysis to confirm the form of the Stoke's law. 	*	*	*

		Tanias and Sub tanias		Student Leoning Outcomes	Cog	nitive l	evels
		Topics and Sub-topics		Student Learning Outcomes	K	U	Α
7.	Oscil	llations	Studen	ts should be able to:		-	
	7.1	Simple Harmonic Motion (SHM)	7.1.1	derive an expression for acceleration of a body vibrating under elastic restoring force;			*
	7.2	Uniform Circular Motion and SHM	7.2.1 7.2.2	discuss SHM in uniform circular motion; derive expression for instantaneous displacement, velocity and acceleration in terms of (ω) ;		*	*
	7.3	Phase Angle	7.3.1	define phase angle;	*		
	7.4	A Horizontal Mass-Spring System	7.4.1	derive an expression for instantaneous velocity in case of horizontal mass-spring system;			*
	7.5	Simple Pendulum	7.5.1 7.5.2 7.5.3	show the motion of a simple pendulum is SHM; derive an expression for the time period of a simple pendulum; solve word problems using the expression for the time period of a simple pendulum;			* * *
	7.6	Energy Conservation in SHM	7.6.1	relate potential energy (PE) and kinetic energy (KE) with total energy for a body oscillating with SHM;		*	
	7.7	Free and Forced Oscillation	7.7.1	exemplify free and forced oscillation;		*	
	7.8	Resonance	7.8.1	exemplify resonance;		*	
	7.9	Damped Oscillations	7.9.1 7.9.2	explain damped oscillation; list different applications of damped oscillation.	*	*	

	Tonics and Sub tonics	Student Learning Outcomes	Co	gnitive l	evels
	Topics and Sub-topics	Student Learning Outcomes	K	U	Α
8.	Waves	Students should be able to:			
	8.1 Wave Motion	8.1.1 describe periodic waves;		*	
		8.1.2 exemplify the propagation of waves;		*	
		8.1.3 define progressive waves;	*		
		8.1.4 explain energy transfer through a progressive wave;		*	
		8.1.5 differentiate between transverse and longitudinal waves;		*	
		8.1.6 solve word problems using $V = f \lambda$;			*
	8.2 Speed of Sound	8.2.1 relate the speed of sound with the properties of the medium in which it propagates;		*	
		8.2.2 describe Newton's formula for the speed of sound;		*	
		8.2.3 discuss Laplace's correction to Newton's formula;		*	
		8.2.4 explain the effects of pressure, density and temperature on the speed of sound in air;		*	
		8.2.5 show the expression $V = V_o + 0.61 t$;			*
	8.3 Superposition of Waves	8.3.1 state the principle of superposition of two waves;	*		
		8.3.2 describe the phenomenon of interference of sound waves;		*	
		8.3.3 explain the formation of beats using diagrams;		*	
	8.4 Stationary Waves	8.4.1 describe the formation of stationary waves using graphs;		*	
	·	8.4.2 define the terms nodes and antinodes;	*		
		8.4.3 describe the formation of stationary waves in a string;		*	
		8.4.4 classify the harmonic overtones in a string;		*	
		8.4.5 identify the formation of stationary waves in a vibrating air column;		*	
		8.4.6 solve word problems using $L = n \lambda / 2$;			*

Topics and Sub-Topics	Student Learning Outcomes		Cognitive levels			
Topics and Sub-Topics	Student Learning Outcomes	K	U	Α		
	Students should be able to:					
8.5 Doppler's Effect	 8.5.1 define Doppler's effect; 8.5.2 derive the relation between the original frequency of source of sound and the apparent frequency detected by the listener in four different conditions; 8.5.3 solve word problems using the above relations; 8.5.4 explain the application of Doppler's effect in electromagnetic waves; 8.5.5 apply Doppler's effect to understand the working of radar, sonar, satellites and red and blue shifts. 	*	*	* *		

		Topics and Sub-Topics		Student Learning Outcomes		Cognitive levels		
9.	Physi	cal Optics	Studen	ts should be able to:	K	U	Α	
	9.1	Nature of Light	9.1.1 9.1.2 9.1.3 9.1.4	discuss different points of view about nature of light; discuss the concept of wave-front; describe Huygen's principle; relate linear superposition of light with Huygen's principle;		* * *		
	9.2	Interference of Light	9.2.1 9.2.2 9.2.3 9.2.4 9.2.5	describe coherent sources of light; define interference of light; state conditions necessary for the interference of light; explain Young's double slit experiment; derive relation for fringe spacing and use the relation in solving word problems;	*	*	*	
	9.3	Interference in Thin Films	9.3.1	describe basic concept of interference in thin films;		*		
	9.4	Newton's Ring	9.4.1	exemplify the formation of Newton's rings;		*		
	9.5	Michelson's Interferometer	9.5.1	describe the working and uses of Michelson's interferometer;		*		
	9.6	Diffraction of Light	9.6.1 9.6.2 9.6.3	define diffraction of light; describe diffraction of light by diffraction grating; describe diffraction in a narrow slit;	*	*		

	Topics and Sub-Topics	Student Learning Outcomes	Cognitive levels				
	Topics and Sub-Topics	Student Learning Outcomes	K	U	Α		
		Students should be able to:					
9.7	Bragg's Law	 9.7.1 define Bragg's law; 9.7.2 describe X-rays diffraction through crystals; 9.7.3 describe the applications of X-rays diffraction in medical physics; 9.7.4 derive the equation 2 d sin θ = m λ and use this equation for solving word problems; 	*	*	*		
9.8	Polarisation	 9.8.1 describe unpolarised and polarised light; 9.8.2 explain polarisation with reference to transverse waves; 9.8.3 explain the production of polarisation by a polaroid; 9.8.4 describe the applications of polarisation in daily life. 		* * * *			

	Topics and Sub-Topics	Student Learning Outcomes		Cognitive levels		
	Topics and Sub-Topics		Student Learning Outcomes	K	U	Α
10.	Thermodynamics	Student	s should be able to:			
	10.1 Kinetic Theory of Gases	10.1.1 10.1.2 10.1.3	state basic postulates of kinetic theory of gases; calculate pressure on a gas molecule inside a gas container; interpret temperature in terms of kinetic energy;	*		*
	10.2 Gas Laws	10.2.1	derive Boyle's and Charles's law with the help of kinetic theory of gases;			*
	10.3 Internal Energy	10.3.1	explain that internal energy is function of 'state' and is independent of paths;		*	
	10.4 Work and Heat	10.4.1 10.4.2 10.4.3	describe the forms of energy transfer between systems, i.e. heat flow and work done; explain work in terms of change in volume; solve word problems related to the work done in thermodynamics system during a volume change;		*	*
	10.5 Thermodynamics	10.5.1 10.5.2 10.5.3 10.5.4	 define the 'thermodynamics' and 'thermal equilibrium'; explain the 1st law of thermodynamics; apply the 1st law of thermodynamics in (a) isothermal, (b) adiabatic, (c) isobaric, (d) isochoric processes; calculate on the basis of the 1st law of thermodynamics a. change in internal energy, b. work done on the system, c. work done by the system; explain the 1st law of thermodynamics in terms of conservation of energy; 	*	*	*

Topics and Sub-Topics	Student Learning Outcomes		Cognitive levels		
Topics and Sub-Topics		Student Dear Imig Outcomes		U	Α
	Student	s should be able to:			
10.6 Specific and Molar Specific Heat of Gases	10.6.1 10.6.2	define the terms specific heat and molar specific heat; explain $C_p > C_v$	*	*	
	10.6.3	show that $C_{p} - C_{v} = R$ by using 1 st law of thermodynamics;			*
10.7 Reversible and Irreversible Process	10.7.1	compare reversible and irreversible reactions;		*	
10.8 Second Law of Thermodynamics	10.8.1	explain the 2 nd law of thermodynamics using schematic diagram;		*	
10.9 Carnot Engine	10.9.1	describe heat engine with reference to the 2 nd law of thermodynamics;		*	
	10.9.2	explain the working principle of Carnot engine with its four processes with PV diagram;		*	
	10.9.3	derive the formula for efficiency of Carnot engine and use it in solving word problems;			*
10.10 Refrigerator	10.10.1	\mathcal{O}		*	
	10.10.2	derive expression for the coefficient of performance of a refrigerator;			*
10.11 Entropy	10.11.1	explain 'entropy';		*	
	10.11.2	describe positive and negative entropy;		*	
	10.11.3	explain that increase in entropy is an evidence of increase in temperature of a system;		*	
	10.11.4	discuss environmental crisis as an entropy crisis.		*	

Part II (Grade XII)

	Topics and Sub-topicsElectrostatics11.1Electrostatics11.2Coulomb's Law		Student Learning Outcomes	Cog	nitive le	evels				
	1	opics and Sub-topics		Student Learning Outcomes	K	U	Α			
11.	Elect	rostatics	Students should be able to:							
	11.1	Electrostatics	11.1.1	describe charge and types of charge;		*				
	11.2	Coulomb's Law	11.2.1	explain Coulomb's law for static charges;		*				
			11.2.2	describe the effect of medium on Coulomb's force;		*				
			11.2.3	discuss the working of ink-jet printer and photocopier with reference to electrostatic;		*				
	11.3	Electric Field and Electric	11.3.1	define electric intensity;	*					
		Intensity	11.3.2	derive an expression for the magnitude of electric field of a			*			
				distance or from a point charge "q" and use the expression in						
				solving word problems;						
			11.3.3	compare electric field lines formed when		*				
				a. same charges are brought together,						
			11 2 4	b. opposite charges are brought together;		*				
			11.3.4	describe the concept of electric dipole;		*				
	11.4	Electric Flux	11.4.1	explain electric flux;		*				
	11.5	Gauss's Law with its	11.5.1	explain Gauss's law;		*				
		Applications	11.5.2	apply Gauss's law to find the electric field intensity produced			*			
				a. due to a hollow charged spherical,						
				b. due to an infinite sheet of charge,						
				c. between two opposite charged parallel plates;						

Topics and Sub-topics	Student Learning Outcomes		Cognitive levels		
Topics and Sub-topics			U	Α	
	tudents should be able to:				
11.6 Electric Potential	 1.6.1 describe electric potential at a point as work unit charge from infinity to that point; 1.6.2 state unit of electric potential; 1.6.3 describe electric field as potential gradient; 	*	*	*	
	 1.6.4 derive an expression for electric potential at point charge; 1.6.5 define electron volt (eV); 1.6.6 explain Millikan's method to measure the chelectron; 	*	*	*	
11.7 Capacitor	 1.7.1 evaluate capacitance of parallel plate capacitarea, distance and permittivity of free space; 1.7.2 calculate capacitance of different capacitors parallel using formulae; 	;		*	
	1.7.3 describe the effects of resistance in charging of capacitors with the help of q -t graph; 1.7.4 describe time constant; 1.7.5 describe that the product of <i>RC</i> has the same $\tau = RC$;		* * *		
11.8 Energy Stored in a Capacitor	1.8.1prove that energy stored in a capacitor is W $W = \frac{1}{2} CV^2$;1.8.2explain polarisation of dielectric of a capacitor		*	*	

	Л	loning and Sub Toning		Student Learning Outcomes	Cognitive levels		
		opics and Sub-Topics		Student Learning Outcomes	K	U	Α
12.	Curre	ent Electricity	Student	ts should be able to:			
	12.1	Current Electricity	12.1.1 12.1.2 12.1.3	define electric current; describe the flow of current in a conductor; distinguish between conventional and non-conventional current;	*	* *	
	12.2	Resistance	12.2.1 12.2.2 12.2.3 12.2.4 12.2.5	define resistance and conductance; define voltage; state Ohm's law; explain factors affecting resistance; explain non-ohmic relationship between current and voltage for semi-conductor diode and a filament lamp;	* * *	* *	
	12.3	Resistivity and Conductivity	12.3.1 12.3.2 12.3.3 12.3.4 12.3.5 12.3.6	define resistivity; define conductivity; differentiate between resistivity and conductivity; derive a relation between resistance and resistivity; describe the relationship between temperature and resistance; calculate the value of carbon resistance by using colour codes;	*	*	*
	12.4	Internal Resistance	12.4.1 12.4.2 12.4.3 12.4.4 12.4.5	define electromotive force (e.m.f.); derive a relationship between e.m.f. and potential difference (PD) with the help of formula; discuss examples of effect of internal resistance on external circuit in terms of current and voltage; define electric power; calculate the formula of power in terms of current (I), voltage (V) and resistance (R);	*	*	*

Topics and Sub-Topics	Student Learning Outcomes		Cognitive levels			
Topics and Sub-Topics		Student Learning Outcomes	K	U	Α	
	Students should be able to:					
	12.4.6	calculate the power dissipation due to the internal resistance of a circuit;			*	
12.5 Kirchoff's Laws	12.5.1	explain Kirchoff's laws;		*		
	12.5.2	explain conservation of charge in a circuit with the help of Kirchoff's 1 st law;		*		
	12.5.3	explain conservation of energy in a circuit with the help of Kirchoff's 2 nd law;		*		
12.6 Potential Divider	12.6.1	exemplify potential divider;		*		
	12.6.2	explain the construction and working of a rheostat with the help of a diagram;		*		
	12.6.3	explain the functions of a rheostat as a potential divider;		*		
12.7 Balanced Potential	12.7.1	describe Wheatstone bridge with the help of a diagram;		*	*	
	12.7.2 12.7.3	calculate the unknown resistance by using a Whetstone bridge; describe potentiometre with the help of diagram;		*	т Т	
	12.7.3	describe potentionetre with the help of diagram, describe the measurement and comparison of e.m.f. by using potentiometre;		*		
	12.7.5	explain the accuracy of potentiometre for e.m.f.'s measurement and comparison.		*		

	т	opics and Sub-Topics	Student Learning Outcomes		Cognitive levels		
	1	opics and Sub-Topics		Student Learning Outcomes	K	U	Α
13.	Elect	omagnetism	Student	s should be able to:			
	13.1	Current Carrying Conductor in	13.1.1	describe magnetic field due to current in a straight wire;		*	
		a Magnetic Field	13.1.2	describe the direction of magnetic field produced by a current carrying conductor;		*	
			13.1.3	compare strong and weak magnetic fields;		*	
			13.1.4	derive an expression for force, i.e. $F = ILB \sin \theta$ and use this equation for solving word problems;			*
			13.1.5	describe magnetic flux and magnetic flux density and solve		*	
				problems using $\phi = \vec{B}.\vec{A}$;			
			13.1.6	describe factors governing field produced by long straight wire;		*	
			13.1.7	explain Ampere's law;		*	
			13.1.8	discuss applications of Ampere's law ina. straight current carrying wire,b. solenoid;		*	
	13.2	Force on a Moving Charged Particle	13.2.1	derive an equation for force on a moving charge in a uniform magnetic field and beam of particles and use this equation for solving word problems;			*
			13.2.2	calculate e/m value by using beam of charged particles in a uniform magnetic field;			*
	13.3	Cathode Rays Oscilloscope (CRO)	13.3.1	describe basic principle and uses of CRO;		*	

То	opics and Sub-Topics		Student Learning Outcomes			evels
			С 	K	U	Α
		Students	s should be able to:			
	urrent Carrying Rectangular bils in a Uniform Magnetic eld	13.4.1 13.4.2	derive an expression of torque due to a couple acting on a coil and use this expression for solving word problems; define sensitivity of a galvanometre;	*		*
13.5 Ele	ectrical Instruments	13.5.1 13.5.2 13.5.3 13.5.4	 explain the principle, construction and working of a. galvanometer, b. voltmeter, c. ammeter, d. AVO meter, e. analogue digital multimetre (DMM); explain different types of galvanometer; list the important steps to change a galvanometre into voltmetre and ammetre. differentiate between analogue and digital multimetre. 	*	*	

		Topics and Sub-Topics		Student Learning Outcomes	Cognitive levels		
	_	Topics and Sub-Topics		Student Dearning Outcomes		U	A
14.	Electr	omagnetic Induction	Student	ts should be able to:			
	14.1	Law of Electromagnetic Induction	14.1.1 14.1.2 14.1.3	describe electromagnetic induction; explain Faraday's law of electromagnetic induction; apply Lenz's law to determine the direction of induced e.m.f.;		* *	*
	14.2	Inductance	14.2.1 14.2.2	distinguish between inductance and induction; explain self and mutual induction with formula and units;		*	
	14.3	Energy Stored in an Inductor	14.3.1 14.3.2	derive the formula $E = \frac{1}{2} L I^2$; show that the energy is stored in an inductor;			*
	14.4	Simple Alternating Current (AC) Generator, Direct Current (DC) Generator and Direct Current (DC) Motor	14.4.1 14.4.2 14.4.3	describe principle, construction and working of an AC and DC generator; differentiate between AC and DC generators; discuss the effects of back e.m.f. in motor and back motor effects in generator;		* * *	
	14.5	Transformer	14.5.1 14.5.2 14.5.3 14.5.4 14.5.5	describe the principle, construction and working of a transformer; differentiate between 'step-up' and 'step-down' transformer; list the uses of step-up and step-down transformers in daily life; derive $\frac{N_s}{N_p} = \frac{V_s}{V_p}$ and $V_s I_s = V_p I_p$ for an ideal transformer and use it for solving word problems; describe the simple energy losses due to eddy current and hysteresis.	*	*	*

	Topics and Sub-Topics	Student Learning Outcomes	Cognitive levels		
	Topics and Sub-Topics	Student Learning Outcomes	K	U	Α
15.	Alternating Current	Students should be able to:			
	15.1 Root Mean Square Value (rms)	 15.1.1 describe sinusoidal waves; 15.1.2 define alternating current and alternating voltage; 15.1.3 describe the following terms: a. time period, b. frequency, c. peak value; 	*	*	
		15.1.4 calculate the rms value of alternate current and alternate voltage;			*
	15.2 Alternating Current (AC) Circuits	 15.2.1 explain the flow of AC through resister, capacitor and inductor; 15.2.2 explain 'phase lag' and 'phase lead' in a circuit through a vector diagram; 		*	
	15.3 Impedance	15.3.1 derive the expression of impedance as vector summation of resistance in series (R-C and R-L) circuits;			*
	15.4 Three Phase AC supply	15.4.1 describe three phase AC supply;		*	
	15.5 Electromagnetic Waves	15.5.1 explain electromagnetic waves and spectrum (ranging from radio waves to gamma rays);		*	
		 15.5.2 describe production, transmission and receptions of electromagnetic (EM) waves; 15.5.3 describe the amplitude modulation (AM) and frequency modulation (FM). 		*	

	Topics and Sub-Topics			Student Leoning Outcomes	Cognitive levels			
		Topics and Sub-Topics		Student Learning Outcomes		U	Α	
16.	Physi	cs of Solids	Student	s should be able to:				
	16.1	Classification of Solids	16.1.1 16.1.2	define lattice and unit cell of crystalline solids; distinguish among the structures of crystalline, amorphous and polymeric solids;	*	*		
	16.2	Mechanical Properties of Solids	16.2.1 16.2.2 16.2.3 16.2.4 16.2.5 16.2.6	differentiate between elastic and plastic deformations in solids; define tensile compression stress; define Young's modulus, shear modulus and bulk modulus; derive the formulae of Young's modulus, shear modulus and bulk modulus; define elastic limit and yield strength; deduce the strain energy in a deformed material from an area under the force and extension graph;	* *	*	*	
	16.3	Electric Properties of Solids	16.3.1 16.3.2 16.3.3	define conductors, insulators and semiconductors; describe energy bands in solids; describe energy gaps in insulators and, intrinsic and extrinsic semiconductors;	*	* *		
	16.4	Super Conductors	16.4.1	describe the behaviour of super conductors and their potential uses;		*		
	16.5	Magnetic Properties of Solids	16.5.1 16.5.2 16.5.3 16.5.4	 state domain theory of magnetism; describe diamagnetic, paramagnetic and ferromagnetic solids; describe ferromagnets as a special case of paramagnets, magnetic dipoles and domains; define the following terms: a. curie point, b. soft and hard magnetic substances. 	*	* *		

Topics and Sub-Topics			Student I coming Outcomes	Cognitive levels			
		opics and Sub-1 opics		Student Learning Outcomes	K	U	Α
17.	Electi	onics	Student	s should be able to:			
	17.1	Electronics	17.1.1	define electronics;	*		
	17.2	Semiconductor Devices	17.2.1	differentiate between conductors and insulators;		*	
			17.2.2	describe semiconductors materials;		*	
			17.2.3	differentiate between p-type and n-type semiconductors with the help of diagrams;		*	
			17.2.4	describe p-n junction and p-n junction diode with labelled diagrams;		*	
			17.2.5	describe forward and reverse bias;		*	
			17.2.6	describe direct current;		*	
			17.2.7	define rectification;	*		
			17.2.8	describe half and full wave rectification;		*	
			17.2.9	describe the function and uses of light-emitting diodes (LEDs) and photodiodes;		*	
			17.2.10	1	*		
			17.2.11			*	
			17.2.12				*
	17.3	Operational Amplifier	17.3.1	define operational amplifier;	*		
			17.3.2	describe operational amplifier as an inverting and non- inverting amplifier;		*	
			17.3.3	explain the uses of transistor as a switch and as an amplifier;		*	
	17.4	Digital System	17.4.1	describe logic gates;		*	
			17.4.2	explain functions of logic gates with the help of truth table with two inputs;		*	
			17.4.3	relate different logic gates and their control function.		*	

	Topics and Sub-Topics	Student Learning Outcomes	Cognitive levels			
	Topics and Sub-Topics	Student Learning Outcomes	K	U	A	
18.	Dawn of Modern Physics	Students should be able to:				
	18.1 Special Theory of Relativity	 18.1.1 distinguish between inertial and non-inertial frames of reference; 18.1.2 explain postulates of special theory of relativity; 18.1.3 describe if the speed of light (c) is constant then space and time become relative; 18.1.4 describe the consequences of special theory of relativity; 18.1.5 explain the amplification of a. mass increase, b. time dilation, c. length contraction for speed travel; 		* * * *		
	18.2 Quantum Theory	18.2.1discuss the blackbody radiations using wavelength-energy graph;18.2.2describe laws governing blackbody radiations and their drawbacks;18.2.3explain Planck's assumption for the existence of blackbody;18.2.4describe that the radiations emitted and absorbed by blackbody is quantised;18.2.5discuss photon as an electromagnetic radiation;		* * * *		
	18.3 Photoelectric Effect	 18.3.1 describe photoelectric effect; 18.3.2 explain different features of photoelectric effect using a graph; 18.3.3 derive Einstein's photoelectric equation; 18.3.4 define a photocell; 18.3.5 list the uses of photocell; 	*	*	*	

Topics and Sub Topics	Student Learning Outcomes	Cognitive level		evels
Topics and Sub-Topics	Student Learning Outcomes	K	U	Α
	Students should be able to:			
18.4 Compton's Effect	18.4.1 describe the Compton's effect;		*	
	18.4.2 compare the phenomenon of pair production and pair annihilation;		*	
18.5 Dual Nature of Light	18.5.1 describe particle nature of light;		*	
	18.5.2 discuss the wave nature of light;		*	
	18.5.3 state de-Broglie's hypothesis;	*		
	18.5.4 explain that every particle has wave nature as well as particle nature with the reference to de-Broglie's hypothesis;		*	
	18.5.5 describe Davison and Germer experiment;		*	
	18.5.6 state the uncertainty principle;	*		
	18.5.7 explain the uncertainty principle with the help of an experiment.		*	

		Tonias and Sub Tonias		Student Learning Outcomes	Cog	gnitive le	evels
		Topics and Sub-Topics		Student Learning Outcomes	K	U	Α
19.	Atom	ic Spectra	Student	s should be able to:			
	19.1	Atomic Spectra, Spectrum of Hydrogen, Bohr's model of Hydrogen Atom	19.1.1 19.1.2 19.1.3 19.1.4 19.1.5 19.1.6 19.1.7	describe the origin of different types of optical spectra; analyse the experimental facts of hydrogen spectrum; describe Bohr's atomic model of hydrogen atom; explain hydrogen spectrum in terms of energy levels; derive an expression for quantized radii; prove $\frac{1}{\lambda} = R_{_{H}} \left[\frac{1}{p^2} - \frac{1}{n^2} \right]$; solve word problems related to the SLO 19.1.6;		* *	* * *
	19.2	Emission Spectrum	19.2.1	deduce spectral lines through discrete electron energy level;			*
	19.3	Excitation and Ionization Potential	19.3.1 19.3.2	define excitation potential and ionisation potential; determine ion energy and excitation energy levels of an atom using an energy level diagram;	*		*
	19.4	Inner Shell Transition and Characteristics	19.4.1 19.4.2 19.4.3	describe inner shell transitions; explain production and characteristics of X-rays based on inner shell transition; explain the production, properties and uses of X-rays;		* * *	
	19.5	Lasers	19.5.1 19.5.2	 describe the following terms: a. spontaneous emission, b. stimulated emission, c. meta-stable state, d. population inversion,` e. laser action; describe the structure and functions of main components of 		*	

	Topics and Sub-Topics			Student Leoming Outcomes	Cognitive levels			
		Topics and Sub-Topics		Student Learning Outcomes	K	U	Α	
20.	Nucle	ar Physics	Student	ts should be able to:				
	20.1	Composition of Atomic Model	20.1.1	describe a simple model of an atom to include electrons, protons and neutrons;		*		
	20.2	Atomic Number, Mass Number, Isotopes and Isobars	20.2.1 20.2.2	define the following terms: a. atomic number, b. mass number, c. isotopes, d. isobars; determine number of protons, neutrons and nucleons for the specification of nucleus in the form ${}_{Z}^{A}X$;	*		*	
	20.3	Mass Spectrograph	20.3.1	describe the principle, construction and working of mass spectrograph;		*		
	20.4	Mass Defect and Binding Energy	20.4.1 20.4.2	 define the following terms: a. mass defect, b. binding energy; identify (graphically) variation of binding energy per nucleon using mass number; 	*	*		
	20.5	Radioactivity	20.5.1 20.5.2	define the term 'radioactivity'; list the properties of α , β and γ radiations;	* *			
	20.6	Law of Radioactive Decay	20.6.1 20.6.2 20.6.3 20.6.4	explain the process of radioactive decay; describe α , β and γ decay with balanced equations; define half-life of a radioactive element; derive an equation for first and second half-life from the decay of radioactive element;	*	*	*	

Т	Topics and Sub-Topics		Student Learning Outcomes		Cognitive levels		
		Students	s should be able to:	K	U	A	
20.7	Detection of Ionizing Radiation	20.7.1 20.7.2	describe the effect of α , β particles and γ rays on matter; analyse the nature of radiations emitted from a radioactive particle by using Wilson cloud chamber, Geiger-Muller (G.M.) counter and solid state detector;		*	*	
20.8	Nuclear Fission and Fusion	20.8.1	differentiate between nuclear fission and fusion;		*		
20.9	Nuclear Reactor	20.9.1 20.9.2	explain the working principle of a nuclear reactor; list the various types of nuclear reactor;	*	*		
20.10	Nuclear Radiations and Exposure	20.10.1	discuss the biological effects due to exposure of nuclear radiations;		*		
20.11	Medical Physics	20.11.1 20.11.2	describe uses of radiations for medical diagnosis and therapy; describe importance of limiting exposure to ionising radiations;		*		
20.12	Basic Forces of Nature	20.12.1	describe basic forces of nature;		*		
20.13	Building Blocks of Nature	20.13.1	describe the modern view of the building blocks of matter based on hadrons, leptons and quarks.		*		

Blank Page