Topics and Student Learning Outcomes of the Examination Syllabus

Topics			Student Learning Outcomes	Cog	Cognitive level ²		
			5			A	
1. Mea	asurement	Candid	ates should be able to:				
1.1	Scope of physics	1.1.1	describe the importance of physics in science, technology and society;	*			
1.2	S.I Units	1.2.1	describe S.I base units, derived units and supplementary units for various measurements:		*		
		1.2.2	show the derived units as products or quotients of the base units;			*	
1.3	Errors and Uncertainty	1.3.1 1.3.2	differentiate between systematic and random errors; identify the uncertainty in the derived quantity;		*	*	
1.4	Precision and Accuracy	1.4.1	give two differences between precision and accuracy;		*		
1.5	Significant figures	1.5.1	show answers with correct scientific notations, number of significant figures in all numericals:			*	
		1.5.2	identify that least count (L.C) of an instrument is the smallest increment measurable by it;			*	
1.6	Dimensions	1.6.1	show the homogeneity of three physical equations by using dimension			*	
		1.6.2	derive formula for three physical quantities by using dimensions.			*	

 $^{^{2}}$ K = Knowledge, U = Understanding, A= Application (for explanation see section 6: Definition of command words used in Student Learning Outcomes and in Examination Questions).

2.	2. Vectors and Equilibrium		uilibrium Candidates should be able to:		K	U	Α
	2.1 2.2	Cartesian coordinate system Addition of vectors by head to tail rule	2.1.1 2.2.1 2.2.2 2.2.3	describe the Cartesian coordinate system in two and three dimension systems; explain the sum of vectors using head to tail rule; define resultant, negative, unit, null, position and equal vectors; represent a vector into its rectangular components;	*	*	*
	2.3	Addition of vectors by rectangular component method	2.3.1	determine the sum of vectors using perpendicular components;			*
	2.4	Scalar product of two vectors	2.4.1 2.4.2 2.4.3	define scalar product of two vectors; describe the scalar product of two vectors in terms of angle between them; discuss any five properties of scalar product of two vectors;	*	*	
	2.5	Vector product of two vectors	2.5.1 2.5.2 2.5.3	define vector product of two vectors; describe vector product of two vectors in terms of angle between them; discuss any five properties of vector product;	*	* *	
	2.6	Torque	2.6.1 2.6.2	define torque as a vector product of $\vec{\mathbf{r}} \times \vec{\mathbf{F}}$; list two applications of torque;	*		
	2.7	Equilibrium of forces	2.7.1 2.7.2	define equilibrium; state first and second condition of equilibrium.	*		

3. Mo	tion and Force	Candid	ates should be able to:	K	U	Α
3.1	Displacement	3.1.1	define displacement with illustrations;	*		
3.2	Velocity	3.2.1	define velocity, average velocity and instantaneous velocity with illustrations;	*		
		3.2.2 3.2.3	define acceleration, average acceleration and instantaneous acceleration; manipulate velocity-time graph for constant direction and understand significance of area under velocity-time graph;	*		*
3.3	Acceleration	3.3.1	summarize the equations of motion for uniformly accelerated bodies in a straight line and in uniform gravitational field in a non-resistive medium;		*	
3.4	Equations of motion	3.4.1	state Newton's laws of motion;	*		
3.5	Force, Momentum and	3.5.1	describe the relation between Newton's 2 nd law of motion and the rate of abanga of momentum:		*	
	Impulse	352	infer impulse as product of impulsive force and time:		*	
		3.5.3	describe law of conservation of momentum:		*	
		3.5.4	apply law of conservation of momentum and study the special cases of elastic collision between two bodies in one dimension;			*
		3.5.5	describe the force produced due to flow of water;		*	
		3.5.6	apply the law of conservation of momentum to study explosive forces;			*
3.6	Projectile	3.6.1	explain forces applied on the process of rocket propulsion;		*	
	5	3.6.2	define projectile, projectile motion and trajectory of projectile;	*		
		3.6.3	describe projectile motion in non-resistive medium;		*	
		3.6.4	derive the relation for time of flight, maximum height and horizontal range of a projectile;		*	
		3.6.5	relate the motion of ballistic missiles with projectile motion.		*	

4.	Wo	rk, Power and Energy	Candidates should be able to:			U	Α
	4.1	Work	4.1.1 4.1.2 4.1.3 4.1.4 4.1.5	define work; describe work when force and displacement are acting at an angle (θ); list three different units of work; distinguish between positive, negative and zero work with three examples; describe work done by variable and constant forces:	* * *	*	
	4.2	Work done in a gravitational field	4.2.1	explain the work done in a gravitational field;		*	
	4.3	Power	4.3.1 4.3.2 4.3.3	define power. Also write down its dimension; list three different units of power; derive a formula of power in terms of force and velocity;	*		*
	4.4	Energy	4.4.1 4.4.2 4.4.3	define energy; differentiate between potential and kinetic energy; write three different units of energy;	*		*
	4.5	Work-energy relation	4.5.1 <u>CASES</u> (i) (ii)	describe how energy is related with work when friction is present when friction is not present;			*
	4.6	Absolute gravitational energy	4.6.1	analyse the absolute gravitational energy and derive an expression for absolute P.E;			*
	4.7	Escape velocity	4.7.1 4.7.2 4.7.3	describe the concept of escape velocity; derive the formula for escape velocity; compute escape velocity for the Moon and the Earth when mass and radius of the bodies are given;	*	*	*

					K	U	Α
	4.8	Conservation of energy	4.8.1 4.8.2	state and explain the law of conservation of energy; interconversion of potential energy and kinetic energy in a resistive medium;	*	*	
	4.9	Types of energy sources	4.9.1 4.9.2	list the conventional and non-conventional energies; describe the uses of energy.	*		*
5.	Circ	cular Motion	Candid	ates should be able to:			
	5.1	Angular motion	5.1.1 5.1.2	define angular displacement, angular velocity and angular acceleration; produce the relation between linear and angular displacement, velocity and acceleration;	* *		
	5.2	Centripetal force and Centripetal acceleration	5.2.1 5.2.2 5.2.3	define centripetal force and centripetal acceleration; derive centripetal acceleration when velocity is uniform; convert centripetal acceleration in terms of angular velocity;	*	* *	
	5.3	Moment of inertia	5.3.1 5.3.2	define moment of inertia; define the formula for moment of inertia;	*	*	
	5.4	Angular momentum	5.4.1 5.4.2 5.4.3	define angular momentum; write S.I unit and dimension of angular momentum; state and explain law of conservation of angular momentum;	*	*	
	5.5	Rotational kinetic energy	5.5.1 5.5.2	define rotational kinetic energy; derive an expression for rotational kinetic energy;	*	*	
	5.6	Artificial satellites and weightlessness	5.6.1 5.6.2 5.6.3	define weightlessness in artificial satellites; categorize the different types of satellites; explain how artificial gravity can be produced when a satellite revolves around the earth;	*	*	*

					K	U	Α
	5.7	Orbital velocity	5.7.1	define orbital velocity;	*		
			5.7.2	derive a relation for orbital velocity;		*	
	5.8	Newton's and Einstein's views on gravitation	5.8.1	differentiate between Newton's and Einstein views on gravitation.		*	
6.	Flui	d Dynamics	Candid	ates should be able to:			
	6.1	Streamline and Turbulent flow	6.1.1	define streamline and turbulent flow and state the conditions for turbulent flow;		*	
	6.2	Equation of continuity	6.2.1	derive the equation of continuity and on the basis of this equation describe the motion of a rocket;		*	
	6.3	Bernoulli's equation	6.3.1 6.3.2 6.3.3	derive Bernoulli's equation; interpret and apply Bernoulli Effect in the; filter pump, venturi meter and atomizers; solve problems by the help of Bernoulli's equation;			* * *
	6.4	Viscous fluids	6.4.1 6.4.2	define viscous and non-viscous fluids; describe that viscous force in a fluid causes a retarding force on an object moving through it;	*	*	
	6.5	Fluid friction	6.5.1 6.5.2 6.5.3	define fluid friction; apply dimensional analysis to confirm the form of the stokes law; apply Stokes law to derive an expression for terminal velocity of spherical body falling through viscous fluids;	*		* *
	6.6	Terminal velocity	6.6.1	define terminal velocity and describe the factors on which it depends.	*		

7. Osc	illations	Candid	Candidates should be able to:			Α
7.1	Simple harmonic motion (SHM)	7.1.1 7.1.2 7.1.3	define the following terms: oscillatory motion, periodic motion, time period, frequency, amplitude; state and derive Hook's law; derive an expression for acceleration of a body vibrating under elastic restoring force;	*	*	
7.2	Uniform circular motion and SHM	7.2.1 7.2.2	discuss SHM on the basis of uniform circular motion; derive expression for displacement, instantaneous velocity and acceleration in terms of (ω) ;		*	
7.3	Phase	7.3.1 7.3.2	define phase angle; derive an expression for the displacement "x";	*	*	
7.4	A horizontal mass-spring system.	7.4.1	derive an expression for instantaneous velocity in case of horizontal mass-spring system;			*
7.5	Simple pendulum	7.5.1 7.5.2	define simple pendulum also show that its motion is SHM; derive an expression for the time period of simple pendulum;	*	*	
7.6	Energy conservation in SHM	7.6.1	relate between P.E, K.E and total energy for a body oscillating with SHM;		*	
7.7	Free and Forced oscillation	7.7.1	explain free and forced oscillation with three examples;		*	
7.8	Resonance	7.8.1	explain the phenomenon of resonance, give its three examples also list its different applications;		*	
7.9	Damped oscillations	7.9.1	define damped oscillation, list down its different applications.	*		

8.	Waves	Candidates should be able to:	K	U	A
	8.1 Wave motion	8.1.1 define wave motion with the help of two examples; 8.1.2 define periodic waves; 8.1.3 describe the propagation of waves with the help of an example; 8.1.4 define progressive waves; 8.1.5 explain how energy is transferred through a progressive wave; 8.1.6 differentiate between transverse and longitudinal waves; 8.1.7 show the relation $V = v \lambda$;	* *	* * *	
	8.2 Speed of sound	 8.2.1 show that the speed of sound depends on the properties of medium in which it propagates; 8.2.2 describe Newton's formula for speed of sound; 8.2.3 discuss Laplace's correction in Newton's formula; 8.2.4 manifest the effects of pressure, density and temperature on the speed of sound in air; 8.2.5 show the expression V = V_o + 0.61 t; 	*	* * *	
	8.3 Superposition of waves	 8.3.1 state the principle of superposition of two waves; 8.3.2 describe the phenomenon of interference of sound waves; 8.3.3 discriminate the formation of beats giving an illustration; 	*	*	*
	8.4 Stationary waves	 8.4.1 define stationary waves and describe their formation using graphical approach; 8.4.2 define the terms nodes and antinodes; 8.4.3 describe with illustration the formation of stationary waves in string; 8.4.4 identify the formation of stationary waves in a vibrating air column; 8.4.5 describe modes of vibration in string and explain using L = n λ / 2; 	*	*	*

					K	U	Α
	8.5	Doppler's effect	8.5.1	define Doppler's effect;	*		
			8.5.2	derive the relation between the original frequency of source of sound and the apparent frequency detected by the listener in four different conditions:		*	
			8.5.3	explain that the Doppler's effect is also applicable in electromagnetic waves;		*	
			8.5.4	apply Doppler's effect to understand the following: radar, sonar, astronomy and satellites;			*
	8.6	Ultrasonic waves	8.6.1	define ultrasonic waves;	*	đ	
			8.6.2 8.6.3	determine the principle of generation and detection of ultrasonic waves; interpret the principle used in ultrasound for diagnostic purposes.		*	*
9.	Phy	sical Optics	Candida	ates should be able to:			
	9.1	Nature of light	9.1.1 9.1.2 9.1.3	discuss different point of views about nature of light briefly; understand the concept of wave front; state Hygen's principle and use it to explain linear superposition of light:	*	*	
	9.2	Interference of light	9.2.1 9.2.2 9.2.3	define interference of light and necessary conditions for it; describe and explain Young's double slit experiment; derive relation for fringe spacing;	*	*	*
	9.3	Interference in thin films	9.3.1	give basic concept of interference in thin films;		*	
	9.4	Newton's ring	9.4.1	explain the phenomenon of formation of Newton's rings and give three examples;		*	
	9.5	Michelson's interferometer	9.5.1	understand the working and use of Michelson's interferometer;		*	

				K	U	Α
9.6	Diffraction of light	9.6.1	define diffraction of light;	*		
		9.6.2	describe diffraction of light by diffraction gratting;		*	
		9.6.3	describe and explain diffraction in a narrow slit;		*	
		9.6.4	describe X-rays diffraction through crystals;		*	
97	Bragg's law	971	define Bragg's law.	*		
	21088 2 1011	972	derive the equation 2 d sin $\theta = m \lambda$.			*
9.8	Polarization	9.8.1	define polarization;	*		
		9.8.2	understand polarization as a phenomenon associated with transverse		*	
			waves;			
		9.8.3	recognize and express that polarization is a product by a polaroid.			*
10 71						
10. 1 ne	rmodynamics		ates should be able to:			
10.1	Kinetic theory of gases	10.1.1	state basic postulates of kinetic theory of gases:	*		
		10.1.2	calculate pressure on a gas molecule inside a gas container;			*
		10.1.3	interpret temperature in terms of kinetic energy;		*	
10.2	Gas laws	10.2.1	define Boyle's and Charle's law with the help of kinetic theory;	*		
10.3	Internal energy	10.3.1	explain that internal energy is function of state and is independent of	*		
			pauls,			
104	Work and heat	10.4.1	describe that heat flow and work are two form of energy transfer		*	
			between systems and calculate the heat beings transferred;			
		10.4.2	express work in terms of change in volume;		*	

			K	U	Α
10.5 Thermodynamics	10.5.1 10.5.2	define thermodynamics and thermal equilibrium; state and explain 1st law of thermodynamics;	*	*	
	10.5.3	apply the 1st law of thermodynamics in (i) isothermal, (ii) adiabatic, (iii) isobaric, (iv) isochoric;			*
	10.5.4	describe 1st law of thermodynamics in terms of change in internal energy, work done on the system and work done by the system:			*
	10.5.5	explain 1 st law of thermodynamics in terms of conservation of energy;		*	
10.6 Specific and Molar specific	10.6.1	define the terms: (i) specific heat (ii) molar specific heat;	*		*
heat of gases.	10.6.2	apply 1st law of thermodynamics to show that $C_p - C_v = R$, also explain $C_p > C_v$;			Ť
10.7 Reversible and Irreversible process	10.7.1	define reversible and irreversible process;	*		
10.8 Second Law of thermodynamics	10.8.1	state and explain the 2 nd law of thermodynamics with the help of schematic diagram;		*	
10.9 Carnot engine	10.9.1 10.9.2	define heat engine in terms of 2 nd law of thermodynamics; explain the working principle of carnot engine with its four processes	*		*
	10.9.3	derive the formula for efficiency of carnot engine and explain it;			*

				K	U	Α
10.10	Refrigerator	10.10.1	describe refrigerator as it is a reverse of heat engine and derive expression for its efficiency;		*	
10.11	Entropy	10.11.1 10.11.2 10.11.3	explain the term entropy; describe positive and negative entropy; explain that increase in entropy is an evidence of increase of temperature of a system:	*	*	*
		10.11.4	appreciate environmental crisis as an entropy crisis.	*		

Part-II (Class XII)

			K	U	Α
11. Electrostatics	Candida	ates should be able to:			
11.1 Electrostatics	11.1.1	define charge and types of charge;	*		
11.2 Coulomb's law	11.2.1 11.2.2 11.2.3	state and explain Coulomb's law for static charges; describe briefly the effect of medium on coulomb's force; apply the principle of electrostatic phenomenon on ink-jet printer and photocopier;		*	*
11.3 Electric field and Electric intensity	11.3.1 11.3.2 11.3.3	 define electric intensity and derive an expression for the magnitude of electric field of a distance or from a point charge "q"; draw electric field lines due to (i) same charges, (ii) opposite charges; describe the concept of electric dipole; 	*	*	
11.4 Electric flux	11.4.1	define and explain electric flux;		*	
11.5 Gauss's law with its applications	11.5.1 11.5.2	state and explain Gauss's law; apply Gauss's law to find field due to a hollow charged spherical conductor near charged plane surface and between two oppositely charged plates;		*	*
11.6 Electric potential	11.6.1	define electric potential at a point in terms of work done in bringing a unit charge from infinity to that point:	*		
	11.6.2	define unit of electric potential;	*		
	11.6.3	describe electric field as potential gradient;	*	*	
	11.0.4	define electron volt (ev);	-1*		

			K	U	Α
11.7 Capacitor	11.7.1	define capacitance of a capacitor and its S.I unit;	*		
	11.7.2	describe functions of capacitors in simple circuit by drawing a labelled			*
		diagram;			
	11.7.3	calculate capacitance of different capacitors in series and in a parallel using formulas;		*	
	11.7.4	explain polarization of dielectric of a capacitor;		*	
11.8 Energy stored in a capacitor	11.8.1	prove that energy stored in a capacitor is $W = \frac{1}{2} QV$ and $W = \frac{1}{2} CV^2$.		*	
12. Current Electricity	Candid	ates should be able to:			
·					
12.1 Current Electricity	12.1.1	define current;	*		
	12.1.2	describe the flow of current in a conductor;	*		
	12.1.3	distinguish any two points between conventional and non-conventional current;		*	
12.2 Resistance	12.2.1	define resistance and conductance;	*		
	12.2.2	define voltage;	*		
	12.2.3	state Ohm's law and give one example of a conductor which obeys ohm's law;		*	
	12.2.4	explain any three factors on which resistance depends;		*	
	12.2.5	explain non-ohmic relationship between current and voltage for semi- conductor diode and a filament lamp:		*	
		· · · · · · · · · · · · · · · · · · ·			

			K	U	Α
12.3 Resistivity and Conductivity	12.3.1	define resistivity;	*		
	12.3.2	define conductivity;	*		
	12.3.3	give three differences between resistivity and conductivity;		*	
	12.3.4	derive a relation between resistance and resistivity;		*	
	12.3.5	show a relation between temperature and resistance;			*
	12.3.6	calculate the value of carbon resistance by using colour code.			*
12.4 Internal resistance	12.4.1	define emf;	*		
	12.4.2	derive a relation between emf and P.D with the help of formula;		*	
	12.4.3	give any two examples of effect of internal resistance on external circuit		*	
		in terms of current and voltage;			
	12.4.4	define power;	*		
	12.4.5	calculate the formula of power in terms of I, V and R;			*
	12.4.6	calculate the power dissipation due to the internal resistance of a circuit;			*
12.5 Kirchoff's laws	1251	state Kirchoff's Laws		*	
	12.5.1	show conservation of charge in a circuit with the help of Kirchoff's 1st			*
	12.0.2	law;			
	12.5.3	show conservation of energy in a circuit with the help of Kirchoff's 2 nd			*
		law;			
12.6 Potential divider	12.6.1	define potential divider with two examples;	*		
	12.6.2	briefly explain the construction and working of a rheostat with the help		*	
		of a diagram;			
	12.6.3	explain the functions of a rheostat as a potential divider;		*	
		· · · · ·			

		K	U	Α
12.7 Balanced potential	12.7.1 define Wheatstone bridge with the help of diagram;	*	*	
	12.7.2 describe the usage of whetstone bridge to measure unknown resistance;	*		
	12.7.4 demonstrate the measurement and comparison of emfs by using		*	
	potentiometer;			
	12.7.5 show that potentiometer is the most accurate device for emf's			*
	measurement and comparison.			
13. Electromagnetisms	Candidates should be able to:			
		.1.		
13.1 Current carrying conductor in a	13.1.1 define domain theory;	*	*	
magnetic field	13.1.2 give a comparison between strong and weak magnetic fields;		*	
	13.1.3 derive an expression for force $F = ILB \sin \theta$;	*	*	
	13.1.4 differentiate between magnetic flux and magnetic flux density;	ጥ		*
	13.1.5 give the factors governing field produced by long straight wire;		*	
	13.1.6 derive the equation for flux $\phi = \mathbf{B} \cdot \mathbf{A}$;			
	13.1.7 state and explain Ampere's current law and its use to find the magnetic		*	
	12.1.8 size surficience of America's large			ste
	13.1.8 give applications of Ampere's law;			*
13.2 Force on a moving charged	13.2.1 derive equation for force on a moving charge in a uniform magnetic		*	
particle	field and (beam of particles);			
	13.2.2 calculate e/m value by using beam of charged particles in a uniform		*	
	magnetic field;			

			K	U	Α
13.3 Cathode rays oscilloscope (CRO)	13.3.1	briefly describe basic principle and uses of CRO;		*	
13.4 Current carrying rectangular coils in a uniform magnetic field	13.4.1 13.4.2	derive an expression of torque due to a couple acting on a coil; define sensitivity of galvanometer;	*	*	
13.5 Electrical instruments	13.5.1	briefly explain the principle, construction and working of galvanometer, voltmeters, ammeter, AVO meter analogue and digital multimetre (DMM);		*	*
	13.5.2	list the important steps to change G.M into voltmeter and ammeter.		·	*
14. Electromagnetic induction	Candida	ates should be able to:			
14.1 Law of electromagnetic induction	14.1.1 14.1.2 14.1.3	describe electromagnetic induction; explain Faraday's law of electromagnetic induction; apply Lenz's law to determine the direction of induced emf;	*		* *
14.2 Inductance	14.2.1 14.2.2	distinguish between inductance and induction; explain self and mutual induction with formula and define its units;		*	
14.3 Energy stored in an inductor	14.3.1	evaluate the formula $E = \frac{1}{2} L I^2$ and show how the energy is stored in an inductor:	*		
14.4 Simple AC generator, DC generator and DC motor	14.4.1	describe principle, construction and working of an AC and DC generator;	*		
	14.4.2 14.4.3	difference between AC and DC generators; Identify back emf in motor and back motor effect in generator;		*	

			K	U	Α
14.5 Transformer	14.5.1	describe the principle, construction and working of a transformer; differentiate between step up and step down transformer;	*	*	
	14.5.2	uses of step up and step down transformers in daily life:		-	*
	14.5.4	show $\frac{N_s}{N_p} = \frac{V_s}{V_p}$ and $V_s I_s = V_p I_p$ for an ideal transformer, use given		*	
		equation to solve problems;			
	14.5.5	describe the simple energy losses due to eddy current and hystersis.	*		
15. Alternating Current	Candid	ates should be able to:			
15.1 Root mean square value (rms)	15.1.1	define alternating current:	*		
1 7	15.1.2	describe time period, frequency, the peak and rms value of alternate	*		
	1513	current and alternate voltage;	*		
	15.1.5	interpret sinusoidar waves,			
15.2 AC Circuits	15.2.1	explain flow of AC through resister, capacitor and inductor;		*	
	13.2.2	show now phase hag lead in a chedit through a vector diagram,			
15.3 Impedance	15.3.1	describe impedance as vector summation of resistance in series	*		
		(R-C and R-L) circuits);			
15.4 Power in AC circuits	15.4.1	knowledge and uses of formula for AC power $P = VI \cos \theta$			*
		(power factor), use this equation in solving problems;			

		K	U	Α
15.5 Resonant circuit	15.5.1 generalise knowledge about the resonance circuit and quantitative understanding of the properties of the circuits containing inductors and capacitors in series and parallel;	*		
	15.5.2 outline the principle of metal detector for security checks and choke coi15.5.3 know the uses of cardiogram;	l;		* *
15.6 Three phase AC supply	15.6.1 describe three phase AC supply;		*	
15.7 Electromagnetic waves	 15.7.1 know the electromagnetic waves and spectrum (ranging from radio waves to gamma rays); 15.7.2 know the production transmission and recentions of EM waves) 	*		*
	15.7.2 Know the production, transmission and receptions of EW waves,15.7.3 describe the amplitude modulation (A.M) and frequency modulation (F.M).		*	
16. Physics of Solids	Candidates should be able to:			
16.1 Classification of solids	16.1.1 distinguish between the structure of crystalline, amorphous and polymeric solids;	*		
	16.1.2 define lattice and unit cell;	*		
16.2 Mechanical properties of solids.	16.2.1 differentiate between elastic and plastic deformations in solids;16.2.2 define tensile compression stress;	*	*	
	16.2.3 define Young's modulus, shear modulus and bulk modulus and derive their formulae;	*		
	16.2.4 define elastic limit and yields strength;16.2.5 deduce the strain energy in a deform materials from the area under the	*		*
	force extension graph;			

			K	U	Α
16.3 Electric properties of solids	16.3.1	define conductors, insulators and semi conductors;	*		
	16.3.2	describe energy bands in solids;		*	
	16.3.3	define energy gaps in insulators, intrinsic and extrinsic semi conductors;	*		
16.4 Super conductors	16.4.1	to become familiar with the behaviour of super conductors and their	*		
		potential uses;			
16.5 Magnetic properties of solids	16.5.1	describe dia, para and ferro magnetic solids;	*		
	16.5.2	describe ferro magnets as a special case of para-magnets, magnetic dipoles		*	
		and domains;			
	16.5.3	define curie point, paramagnetic substances, dia-magnets substances,	*		
		ferro- magnetic substances, soft and hard magnetic substances.			
17. Electronics	Candida	ates should be able to:			
17.1 Electronics	17.1.1	define electronics;	*		
172 Sami andustan devisas	1701	difference hotzeen oon ductors and insulators		*	
17.2 Semi-conductors devices	17.2.1	difference between conductors and insulators,		*	
	17.2.2	explain semi-conductors;		*	
	17.2.3	differentiate p-type and n-type semi-conductors with the help of diagrams;	ste	*	
	17.2.4	define p-n junction and p-n junction diode with labelled diagrams;	*		
	17.2.5	define forward and reverse bias;	*	.1.	
	17.2.6	explain direct current;		*	
	17.2.7	define rectification;	*		
	17.2.8	define half and full wave rectification;	*		
	17.2.9	describe the function and uses of LEDs and photo diode;	*		
	17.2.10	define transistor;	*		
	17.2.11	distinguish between PNP and NPN transistor;		*	
	17.2.12	deduce current equation and its application;			*

		K	U	Α
17.3 Operational amplifier	17.3.1 explain the uses of transistor as a switch and as a amplifier;		*	
17.4 Digital system	 17.4.1 differentiate between analogue and digital system; 17.4.2 describe logic gates and show their function with the help of truth table; 17.4.3 explain and relate different logic gates and their control function. 		*	*
18. Dawn of Modern Physics	Candidates should be able to:			
18.1 Special theory of relativity	 18.1.1 distinguish between inertial and non-inertial frames of reference with two points; 18.1.2 explain any two postulates of special theory of relativity; 18.1.3 identify that if (C) is constant then space and time become relative; 18.1.4 show any four consequences of special theory of relativity; 18.1.5 explain the implification of mass increase, time dilation and length contraction for speed travel; 	*	* *	*
18.2 Quantum theory	 18.2.1 discuss the black body radiations with the help of wavelength-energy graph; 18.2.2 describe any four laws governing black body radiations with their draw backs; 18.2.3 explain planks hypothesis for black body; 18.2.4 show that the radiations emitted and absorbed by black body is quantized; 18.2.5 identify photon as an electromagnetic radiation; 	*	* * * *	
18.3 Photoelectric effect	 18.3.1 describe the phenomenon of photoelectric effect; 18.3.2 explain different features of photoelectric effect with the help of graph; 18.3.3 derive Einstein's photoelectric equation; 18.3.4 define photocell; 18.3.5 give any three uses of photocell; 	*	*	*

			K	U	Α
18.4 Compton's effect	18.4.1	give short account on Compton's effect;	*		
	18.4.2	compare the phenomenon of pair production and pair annihilation;		*	
	18.4.3	give short account on particle nature of light;		*	
	18.4.4	briefly describe the wave nature of light;		*	
	18.4.5	conclude the nature of light;		*	
	18.4.6	state de-Broglie's hypothesis;	*		
	18.4.7	explain de-Broglie's hypothesis to show that every particle has wave nature as well as particle nature;		*	
	18.4.8	describe Davvison and Germer experiment;	*		
	18.4.9	state uncertainty principle;	*		
	18.4.10	explain uncertainty principle with the help of experiment.		*	
19 Atomic Spectra	Candid	ates should be able to			
17. Atomic Speerra	Canulu	atts should be able to.			
19.1 Atomic Spectra Spectrum of	1911	describe the origin of different types of optical spectra.	*		
Hydrogen, Bohr's model of	19.1.2	analyze the experimental facts of hydrogen spectrum:			*
Hydrogen atom	19.1.3	describe Bohr's postulate of atomic model of hydrogen atom:	*		
, , , , , , , , , , , , , , , , , , , ,	19.1.4	explain hydrogen spectrum in terms of energy levels;		*	
	19.1.5	produce the expression for quantized radii;			*
	10.1.6				
	19.1.6	prove $\frac{1}{\lambda} = \mathbf{R}_{\mathrm{H}} \left[\frac{\mathbf{p}^2}{\mathbf{p}^2} - \frac{1}{\mathbf{n}^2} \right];$			*
19.2 Emission of spectral lines	19.2.1	deduce spectral lines through discrete electron energy level;	*		
-					
19.3 Excitation and Ionization	19.3.1	define excitation potential and ionization potential;		*	
potential	19.3.2	determine the ion energy and various excitation energy of an atom using	*		
		an energy level diagram;			

			K	U	Α
19.4 Inner shell transition and	19.4.1	describe inner shell transitions;		*	
Characteristics	19.4.2	explain production and characteristics of X-rays by understanding inner shall transition:		*	
	19.4.3	explain how X-rays are produced, write down any five properties and uses of X-rays;		*	
19.5 LASER	19.5.1	explain the terms spontaneous emission, stimulated emission, meta- stable state, population inversion and laser action;	*	*	
	19.3.2	gas.		Ŧ	
20. Nuclear Physics	Candida	ates should be able to:			
20.1 Composition of atomic model	20.1.1	describe simple model of an atom to include electrons, protons and neutrons;		*	
20.2 Atomic no, mass no, isotopes, isobars	20.2.1 20.2.2	define atomic number, mass number, isotopes and isobars; determine number of protons, neutrons and nucleons for the specification of nucleus in the form ${}_{Z}^{A}X$;	*	*	
20.3 Mass spectrograph	20.3.1	describe the principle, construction and working of mass spectrograph;	*		
20.4 Mass defect and Binding energy	20.4.1	define the terms mass defect, binding energy and draw graphically variation of binding energy per nucleon with the help of mass number;	*		
20.5 Radioactivity	20.5.1	define radioactivity, list the properties of α , β and γ radiations;	*		

			K	U	Α
20.6 Law of radioactive decay	20.6.1	explain the phenomenon of radioactive decay and also describe α , β and γ decay with balance equations;		*	
	20.6.2	define half-life of a radioactive element;		*	
	20.6.3	drive the equation for two half-life from the decay of radioactive element;		*	
20.7 Detection of ionizing radiation	20.7.1	briefly describe the interaction between α , β particle and γ rays with matter;		*	
	20.7.2	detect the nature of radiations emitted from a radioactive particle by using Wilson cloud chamber, G.M counter and Solid state detector;			*
20.8 Nuclear fission and fusion	20.8.1	describe the phenomena of nuclear fission and fusion;		*	
20.9 Nuclear reactor	2091	explain the working principle of a nuclear reactor		*	
	20.9.2	list the various types of nuclear reactor;	*		
20.10 Nuclear radiations and exposure	20.10.1	give the awareness about nuclear radiation exposure and biological effects of radiations.		*	
20.11 Medical physics	20.11.1	describe in simple terms the uses of radiations for medical diagnosis and therapy:		*	
	20.11.2	understand qualitatively the importance of limiting exposure to ionizing radiations;		*	
20.12 Basic forces of nature	20.12.1	describe basic forces of nature;	*		
20.13 Building blocks of nature	20.13.1	describe the modern view of the building blocks of matter based on hadrons, leptons and quarks.	*		